Skip to main content

Sensory Contributions to Spatial Knowledge of Real and Virtual Environments

  • Chapter
  • First Online:
Human Walking in Virtual Environments

Abstract

Most sensory systems are able to inform people about the spatial structure of their environment, their place in that environment, and their movement through it. We discuss these various sources of sensory information by dividing them into three general categories: external (vision, audition, somatosensory), internal (vestibular, kinesthetic) and efferent (efference copy, attention). Research on the roles of these sensory systems in the creation of environmental knowledge has shown, with few exceptions, that information from a single sensory modality is often sufficient for acquiring at least rudimentary knowledge of one’s immediate environment and one’s movement through it. After briefly discussing the ways in which sources of sensory information commonly covary in everyday life, we examine the types and quality of sensory information available from contemporary virtual environments, including desktop, CAVE, and HMD-based systems. Because none of these computer mediated systems is yet able to present a perfectly full and veridical sensory experience to its user, it is important for researchers and VE developers to understand the circumstances, tasks, and goals for which different sensory information sources are most critical. We review research on these topics, as well as research on how the omission, limitation, or distortion of different information sources may affect the perception and behavior of users. Finally, we discuss situations in which various types of virtual environment systems may be more or less useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Desktop VEs are rarely constructed to match the physical viewing angle (the visual extent taken up by the monitor) and the virtual field of view (the amount of the VE that is visible). A user’s physical viewing angle can vary greatly depending on her distance from the display, and it has been shown both that users do not notice this discrepancy [56] and that a wider field of view is advantageous in many tasks (e.g., [5]).

References

  1. Alais D, Burr D (2004) No direction-specific bimodal facilitation for audiovisual motion detection. Cogn Brain Res 19:185–194

    Article  Google Scholar 

  2. Alfano PL, Michel GF (1990) Restricting the field of view: perceptual and performance effects. Percept Motor Skills 70:25–45

    Article  Google Scholar 

  3. Alibali MW (2005) Gesture in spatial cognition: expressing, communicating and thinking about spatial information. Spatial Cogn Comput 5:307–331

    Article  Google Scholar 

  4. Allen GL, Siegel AW, Rosinski R (1978) The role of perceptual context in structuring spatial knowledge. J Experim Psychol Human Learn Mem 4:617–630

    Article  Google Scholar 

  5. Arsenault R, Ware C (2002) Frustum view angle, observer view angle and VE navigation. In: Vidal CA, Kimer C (eds) Proceedings of the V Simposio de Realidade Virtual, Brazilian Computer Society, pp 15–25

    Google Scholar 

  6. Bachmann E, Calusdian J, Hodgson E, Yun X, Zmuda M (2012) Going anywhere anywhere—creating a low cost portable immersive VE system. Manuscript submitted for publication

    Google Scholar 

  7. Bakker NH, Werkhoven PJ, Passenier PO (1999) The effects of proprioceptive and visual feedback on geographical orientation in virtual environments. Presence Teleoperators Virtual Environ 8:36–53

    Google Scholar 

  8. Becker W, Nasios G, Raab S, Jürgens R (2002) Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Exp Brain Res 144:458–474

    Article  Google Scholar 

  9. Berger DR, Schulte-Pelkum J, Bülthoff HH (2010) Simulating believable forward accelerations on a Steward motion platform. ACM Trans Appl Percept 7(1):1–27 (Article 5)

    Google Scholar 

  10. Besson P, Richiardi J, Bourdin C, Bringoux L, Mestre DR, Vercher J (2010) Bayesian networks and information theory for audio-visual perception modeling. Biol Cybern 103:213–226

    Article  MATH  Google Scholar 

  11. Biocca F, Kim J, Choi Y (2000) Visual touch in virtual environments: an exploratory study of presence, multimodal interfaces, and cross-modal sensory illusions. Presence Teleoperators Virtual Environ 10:247–265

    Google Scholar 

  12. Blakemore SJ (2003) Deluding the motor system. Conscious Cogn 12:647–655

    Article  Google Scholar 

  13. Bruggeman H, Piuneu VS, Rieser JJ (2009) Biomechanical versus inertial information: stable individual differences in perception of self-rotation. J Exp Psychol Human Percept Perform 35:1472–1480

    Article  Google Scholar 

  14. Butler JS, Smith ST, Campos JL, Bülthoff HH (2010) Bayesian integration of visual and vestibular signals for heading. J Vis 10:1–13

    Article  Google Scholar 

  15. Campos JL, Byrne P, Sun HJ (2010) The brain weights body-based cues higher than vision when estimating walked distances. Eur J Neurosci 31:1889–1898

    Article  Google Scholar 

  16. Chance SS, Gaunet F, Beall AC, Loomis JM (1998) Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence Teleoperators Virtual Environ 7:168–178

    Google Scholar 

  17. Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychol Bull 133:625–637

    Article  Google Scholar 

  18. Chrastil ER, Warren WH (2012) Active and passive contributions to spatial learning. Psychon Bull Rev 19:1–23

    Article  Google Scholar 

  19. Christou CG, Bülthoff HH (1999) View dependence in scene recognition after active learning. Memory Cogn 27:996–1007

    Article  Google Scholar 

  20. Cohen HS (2000) Vestibular disorders and impaired path integration along a linear trajectory. J Vestib Res 10:7–15

    Google Scholar 

  21. Couclelis H (1996) Verbal directions for way-finding: space, cognition, and language. In: Portugali J (ed) The construction of cognitive maps. Kluwer, Dordrecht, The Netherlands, pp 133–153

    Chapter  Google Scholar 

  22. Cruz-Neira C, Reiners D, Springer JP (2010) An affordable surround-screen virtual reality display. Soc Inf Disp 18:836–843

    Article  Google Scholar 

  23. Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The cave: audio visual experience automatic virtual environment. Commun ACM 35:64–72

    Article  Google Scholar 

  24. Cutting JE, Vishton PM (1995) Perceiving layout: the integration, relative dominance, and contextual use of different information about depth. In: Epstein W, Rogers S (eds) Handbook of perception and cognition: Vol. 5: perception of space and motion. Academic Press, New York

    Google Scholar 

  25. Darken RP, Cockayne WR, Carmein D (1997) The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of ACM symposium on user interface software and technology, pp 213–221

    Google Scholar 

  26. Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  Google Scholar 

  27. Fortenbaugh FC, Hicks JC, Turano KA (2008) The effect of peripheral visual field loss on representations of space: evidence for distortion and adaptation. Investig Ophthalmol Visual Sci 49:2765–2772

    Article  Google Scholar 

  28. Frenz H, Bremmer F, Lappe M (2003) Discrimination of travel distance from ‘situated’ optic flow. Vis Res 43:2173–2183

    Article  Google Scholar 

  29. Gallistel CR (1990) The organization of learning. MIT, Cambridge

    Google Scholar 

  30. Gibson JJ (1958) Visually controlled locomotion and visual orientation in animals. Br J Psychol 49:182–194

    Article  Google Scholar 

  31. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  32. Glasauer S, Amorim MA, Vitte E, Berthoz A (1994) Goal directed linear locomotion in normal and labyrinthine-defective subjects. Exp Brain Res 98:323–335

    Article  Google Scholar 

  33. Goldin SE, Thorndyke PW (1982) Simulating navigation for spatial knowledge acquisition. Human Factors 24:457–471

    Google Scholar 

  34. Golledge R, Klatzky R, Loomis J (1996) Cognitive mapping and wayfinding by adults without vision. In: Portugali J (ed) The construction of cognitive maps. Kluwer, The Netherlands, pp 215–246

    Chapter  Google Scholar 

  35. Grant SC, Magee LE (1998) Contributions of proprioception to navigation in virtual environments. Human Factors 40:489–497

    Article  Google Scholar 

  36. Guidice NA, Bakdash JZ, Legge GE (2007) Wayfinding with words: spatial learning and navigation using dynamically updated verbal descriptions. Psychol Res 71:347–358

    Article  Google Scholar 

  37. Harm DL (2002) Motion sickness neurophysiology, physiological correlates, and treatment. In: Stanney KM (ed) Handbook of virtual environments: design, implementation, and applications. Erlbaum, Mahwah, pp 637–661

    Google Scholar 

  38. Harris LR, Jenkin M, Zikovitz DC (2000) Visual and non-visual cues in the perception of linear self-motion. Exp Brain Res 135:12–21

    Article  Google Scholar 

  39. Hay JC, Pick HL Jr (1965) Visual capture produced by prism spectacles. Psychon Sci 2:215–216

    Google Scholar 

  40. Heilig M (1992) El cine de futro: the cinema of the future. Presence Teleoperators Virtual Environ 1:279–294 (Original work published 1955)

    Google Scholar 

  41. Heft H (1996) The ecological approach to navigation: A Gibsonian perspective. In: Portugali J (ed) The construction of cognitive maps. Kluwer Academic Publishers, Dordrect, pp 105–132

    Chapter  Google Scholar 

  42. Heft H (1997) The relevance of Gibson’s ecological approach for environment-behavior studies. In: Moore GT, Marans RW (eds) Advances in environment, behavior, and design, vol 4. Plenum, New York, pp 71–108

    Google Scholar 

  43. Hettinger LJ (2002) Illusory self-motion in virtual environments. In: Stanney KM (ed) Handbook of Virtual Environments. Erlbaum, New Jersey, pp 471–492

    Google Scholar 

  44. Hilsendeger A, Brandauer S, Tolksdorf J, Fröhlich C (2009) Navigation in virtual reality with the wii balanceboard\(^{TM}\). In: GI-Workshop Virtuelle und Erweiterte Realität, ACM

    Google Scholar 

  45. Hodgson E, Bachmann E, Waller D (2011) Redirected walking to explore virtual environments: assessing the potential for spatial interference. ACM Trans Appl Percept 8, Article 22

    Google Scholar 

  46. Hollerbach JM (2002) Locomotion interfaces. In: Stanney KM (ed) Handbook of virtual environments: design, implementation, and applications. Erlbaum, New Jersey, pp 239–254

    Google Scholar 

  47. von Holst E, Mittlestaedt H (1950) Das reafferenz princip: (Wedlselwirkungen zwischen Zentrainervensystem und Peripherie.) Die Naturwissenschften, 37, 464–476. Translated in: Dodwell PC, ed (1971) Perceptual processing: stimulus equivalence and pattern recognition (pp. 41–72). Appleton-Century-Crofts, New York

    Google Scholar 

  48. Huang J, Chiu W, Lin Y, Tsai M, Bai H, Tai C, Gau C, Lee H (2000) The gait sensing disc: a compact locomotion device for the virtual environment. In: Proceedings of the international conference in central Europe on computer graphics, visualization and interactive digital media. Pilsen, Czech Republic

    Google Scholar 

  49. Iwata H (2000) Locomotion interface for virtual environments. In: Hollerbach J, Koditshek D (eds) Robotics research: the ninth international symposium. Springer-Verlag, London, pp 275–282

    Google Scholar 

  50. Iwata H, Yano H, Fukushima H, Noma H (2005) CirculaFloor. IEEE Comput Graph Appl 25:64–67

    Article  Google Scholar 

  51. Iwata I, Yano H, Nakaizumi F (2001) Gait master: a versatile locomotion interface for uneven virtual terrain. In: Proceedings of IEEE virtual reality conference, pp. 131–137

    Google Scholar 

  52. Jürgens R, Becker W (2006) Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information. Exp Brain Res 174:528–543

    Article  Google Scholar 

  53. Jürgens R, Boß T, Becker W (1999) Estimation of self-turning during active and passive rotation in the dark. Exp Brain Res 128:491–504

    Article  Google Scholar 

  54. Kearns MJ, Warren WH, Duchon AP, Tarr MJ (2002) Path integration from optic flow and body senses in a homing task. Perception 31:349–374

    Article  Google Scholar 

  55. Klatzky RL, Loomis JM, Beall AC, Chance SS, Golledge RG (1998) Updating an egocentric spatial representation during real, imagined, and virtual locomotion. Psychol Sci 9:293–298

    Article  Google Scholar 

  56. Kubovy M (1986) The psychology of linear perspective and renaissance art. Cambridge University Press, Cambridge

    Google Scholar 

  57. Lackner JP, DiZio P (2005) Vestibular, proprioceptive, and haptic contributions to spatial orientation. Ann Rev Psychol 56:115–147

    Article  Google Scholar 

  58. Lappe M, Bremmer F, van den Berg AV (1999) Perception of self-motion from visual flow. Trends Cogn Sci 3:329–336

    Article  Google Scholar 

  59. Larish JF, Flach JM (1990) Sources of optical information useful for perception of speed of rectilinear self-motion. J Exp Psychol Human Percept Perform 16:295–302

    Article  Google Scholar 

  60. Lederman SJ, Klatzky RL (2009) Haptic perception: a tutorial. Atten Percept Psychophys 71:1439–1459

    Article  Google Scholar 

  61. Lepecq J, Giannopulu I, Baudonnière P (1995) Cognitive effects on visually induced body motion in children. Perception 24:435–449

    Article  Google Scholar 

  62. Loomis JM, Klatzky RL, Golledge RG, Philbeck JW (1999) Human navigation by path integration. In: Golledge RG (ed) Wayfinding: cognitive mapping and other spatial processes. Johns Hopkins, Baltimore, pp 125–151

    Google Scholar 

  63. Loomis JM, Klatzky RL, Avraamides M, Lippa Y, Golledge RG (2007) Functional equivalence of spatial images produced by perception and spatial language. In: Mast F, Jäncke L (eds) Spatial processing in navigation, imagery, and perception. Springer, New York, pp 29–48

    Chapter  Google Scholar 

  64. May M, Klatzky RL (2000) Path integration while ignoring irrelevant movement. J Exp Psychol Learn Memory Cogn 26:169–186

    Article  Google Scholar 

  65. Medina E, Fruland R, Weghorst S (2008) Virtusphere: walking in a human size VR “hamster ball”. In: Proceedings of the human factors and ergonomics society, pp 2102–2106

    Google Scholar 

  66. Mittelstaedt H (1996) Somatic graviception. Biol Psychol 42:53–74

    Article  Google Scholar 

  67. Mittelstaedt ML, Mittelstaedt H (2001) Idiothetic navigation in humans: estimation of path length. Exp Brain Res 139:318–332

    Article  Google Scholar 

  68. Nardini M, Jones P, Bedford R, Braddick O (2008) Development of cue integration in human navigation. Curr Biol 18:689–693

    Article  Google Scholar 

  69. Neider MB, Gaspar JG, McCarley JS, Crowell J, Kaczmarski H, Kramer AF (2011) Walking and talking: dual-task effects on street crossing behavior in older adults. Psychology and Aging (Advance online publication)

    Google Scholar 

  70. Nielsen TI (1963) Volition: a new experimental approach. Scand J Psychol 4:225–230

    Article  Google Scholar 

  71. Nitzshe N, Hanebeck UD, Schmidt G (2004) Motion compression for telepresent walking in large target environments. Presence Teleoperators Virtual Environ 13:44–60

    Article  Google Scholar 

  72. Noë A (2004) Action in perception. MIT Press, Boston

    Google Scholar 

  73. Ohmi M (1996) Egocentric perception through interaction among many sensory systems. Cogn Brain Res 5:87–96

    Article  Google Scholar 

  74. Peck TC, Whitton MC, Fuchs H (2009) Evaluation of reorientation techniques for walking in large virtual environments. IEEE Trans Vis Comput Graph 15:121–127

    Article  Google Scholar 

  75. Péruch P, Borel L, Magnan J, Lacour M (2005) Direction and distance deficits in path integration after unilateral vestibular loss depends on task complexity. Cogn Brain Res 25:862–872

    Article  Google Scholar 

  76. Péruch P, May M, Wartenberg F (1997) Homing in virtual environments: effects of field of view and path layout. Perception 26:301–311

    Article  Google Scholar 

  77. Potegal M (1982) Vestibular and neostriatal contributions to spatial orientation. In: Potegal M (ed) Spatial abilities development and physiological foundations. Academic Press, New York, pp 361–387

    Google Scholar 

  78. Pratt DR, Barham PT, Locke J, Zyda MJ, Eastman B, Moore T et al (1994) Insertion of an articulated human into a networked virtual environment. In: Proceedings of the 1994 AI, simulation, and planning in high autonomy systems conference. University of Florida, Gainesville

    Google Scholar 

  79. Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9:129–154

    Article  Google Scholar 

  80. Proffitt DR (2006) Distance perception. Curr Dir Psychol Sci 15:131–135

    Article  Google Scholar 

  81. Razzaque S (2005) Redirected walking. Doctoral dissertation, University of North Carolina, Chapel Hill

    Google Scholar 

  82. Razzaque S, Swapp D, Slater M, Whitton MC, Steed A (2002) Redirected walking in place. In: Muller S, Stuzlinger W (eds) Proceedings of the eurographics workshop on virtual environments. Eurographics Association, pp 123–130

    Google Scholar 

  83. Riecke BE, Cunningham DW, Bülthoff HH (2007) Spatial updating in virtual reality: the sufficiency of visual information. Psychol Res 71:298–313

    Article  Google Scholar 

  84. Riecke B, Feuereissen D, Rieser JJ (2009) Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Trans Appl Percept 6, Article 20

    Google Scholar 

  85. Riecke BE, van Veen HAHC, Bülthoff HH (2002) Visual homing is possible without landmarks: a path integration study in virtual reality. Presence Teleoperators Virtual Environ 11:443–473

    Article  Google Scholar 

  86. Rossano MJ, West SO, Robertson TJ, Wayne MC, Chase RB (1999) The acquisition of route and survey knowledge from computer models. J Environ Psychol 19:101–115

    Article  Google Scholar 

  87. Ruddle RA (2001) Navigation: am I really lost or virtually there? In: Harris D (ed) Engineering psychology and cognitive ergonomics, vol 6. Ashgate, Burlington, pp 135–142

    Google Scholar 

  88. Ruddle RA, Lessels S (2009) The benefits of using a walking interface to navigate virtual environments. ACM Trans Comput Human Interact 16:1–18

    Article  Google Scholar 

  89. Ruddle RA, Payne SJ, Jones DM (1997) Navigating buildings in “desk-top” virtual environments: experimental investigations using extended navigational experience. J Exp Psychol Appl 3:143–159

    Article  Google Scholar 

  90. Sandvad J (1999) Auditory perception of reverberant surroundings. J Acoust Soc Am 105:1193

    Article  Google Scholar 

  91. Schenkman BN, Nilsson ME (2010) Human echolocation: blind and sighted persons’ ability to detect sounds recorded in the presence of a reflected object. Perception 39:483–501

    Article  Google Scholar 

  92. Shelton AL, McNamara TP (1997) Multiple views of spatial memory. Psychon Bull Rev 4:102–106

    Article  Google Scholar 

  93. Shin YK, Proctor RW, Capaldi EJ (2010) A review of contemporary ideomotor theory. Psychol Bull 136:943–974

    Article  Google Scholar 

  94. Sholl MJ (1989) The relation between horizontality and rod-and-frame and vestibular navigational performance. J Exp Psychol Learn Memory Cogn 15:110–125

    Article  Google Scholar 

  95. Sholl MJ (1996) From visual information to cognitive maps. In: Portugali J (ed) The construction of cognitive maps. Kluwer, Dordrecht, pp 157–186

    Chapter  Google Scholar 

  96. Souman JL, Giordano PR, Schwaiger M, Frissen I, Thümmel T, Ulbrich H, De Luca A, Bülthoff HH, Ernst MO (2011) CyberWalk: enabling unconstrained omnidirectional walking through virtual environments. ACM Trans Appl Percept 8, Article 25

    Google Scholar 

  97. Stanton DEB, Wilson PN, Foreman N (2003) Human shortcut performance in a computer-simulated maze: a comparative study. Spatial Cogn Comput 3:315–329

    Article  Google Scholar 

  98. Stoffregen TA, Pittenger JB (1995) Human echolocation as a basic form of perception and action. Ecol Psychol 7:181–216

    Article  Google Scholar 

  99. Stratton G (1896) Some preliminary experiments on vision without inversion of the retinal image. Psychol Rev 3:341–360

    Google Scholar 

  100. Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M (2009) Estimation of detection thresholds for redirected walking techniques. IEEE Trans Vis Comput Graph 16(1):17–27

    Google Scholar 

  101. St. George RJ, Fitzpatrick RC (2011) The sense of self-motion, orientation and balance explored by vestibular stimulation. J Physiol 589:807–813

    Article  Google Scholar 

  102. Sun HJ, Campos JL, Chan GSW (2004) Multisensory integration in the estimation of relative path length. Exp Brain Res 154:246–254

    Article  Google Scholar 

  103. Telford L, Howard IP, Ohmi M (1995) Heading judgments during active and passive self-motion. Exp Brain Res 104:502–510

    Article  Google Scholar 

  104. Templeman JN, Denbrook PS, Sibert LE (1999) Virtual locomotion: walking in place through virtual environments. Presence Teleoperators Virtual Environ 8:598–619

    Article  Google Scholar 

  105. Thorndyke PW, Hayes-Roth B (1982) Differences in spatial knowledge acquired from maps and navigation. Cogn Psychol 14:560–589

    Article  Google Scholar 

  106. Toet A, Jansen SEM, Delleman NJ (2007) Effects of field-of-view restrictions on speed and accuracy of manoeuvring. Percept Motor Skills 105:1245–1256

    Google Scholar 

  107. Turvey MT, Carello C (1986) The ecological approach to perceiving-acting: a pictorial essay. Acta Psychol 63:133–155

    Article  Google Scholar 

  108. Van Erp JBF, Van Veen HAHC, Jansen C, Dobbins T (2005) Waypoint navigation with a vibrotactile waist belt. ACM Trans Appl Percept 2:106–117

    Article  Google Scholar 

  109. Waller D, Bachmann E, Hodgson E, Beall AC (2007) The HIVE: A Huge Immersive Virtual Environment for research in spatial cognition. Behav Res Methods 39:835–843

    Article  Google Scholar 

  110. Waller D, Greenauer N (2007) The role of body-based sensory information in the acquisition of enduring spatial representations. Psychol Res 71:322–332

    Article  Google Scholar 

  111. Waller D, Hunt E, Knapp D (1998) The transfer of spatial knowledge in virtual environment training. Presence Teleoperators Virtual Environ 7:129–143

    Article  Google Scholar 

  112. Waller D, Loomis JM, Haun DBM (2004) Body-based senses enhance knowledge of directions in large-scale environments. Psychon Bull Rev 11:157–163

    Article  Google Scholar 

  113. Waller D, Loomis JM, Steck S (2003) Inertial cues do not enhance knowledge of environmental layout. Psychon Bull Rev 10:987–993

    Article  Google Scholar 

  114. Witmer BG, Bailey JH, Knerr BW, Parsons KC (1996) Virtual spaces and real world places: transfer of route knowledge. Int J Human Comput Stud 45:413–428

    Article  Google Scholar 

  115. Yardley L (1992) Motion sickness and perception: a reappraisal of the sensory conflict approach. Br J Psychol 83:449–471

    Article  Google Scholar 

  116. Yardley L, Higgins M (1998) Spatial updating during rotation: the role of vestibular information and mental activity. J Vestib Res 8:435–442

    Article  Google Scholar 

  117. Yost WA (2001) Auditory localization and scene perception. In: Goldstein EB (ed) Blackwell handbook of perception. Blackwell Publishers, Malden, pp 437–468

    Google Scholar 

  118. Zhang H, Mou W, McNamara TP (2011) Spatial updating according to the intrinsic reference direction of a briefly viewed layout. Cognition 119:419–429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Waller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waller, D., Hodgson, E. (2013). Sensory Contributions to Spatial Knowledge of Real and Virtual Environments. In: Steinicke, F., Visell, Y., Campos, J., Lécuyer, A. (eds) Human Walking in Virtual Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8432-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8432-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8431-9

  • Online ISBN: 978-1-4419-8432-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics