Advertisement

Applications to NDE of Coatings

  • Harold A. Sabbagh
  • R. Kim Murphy
  • Elias H. Sabbagh
  • John C. Aldrin
  • Jeremy S. Knopp
Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

Characterizing surfaces and coatings has long been a staple of eddy-current technology, but with the advent of inverse methods that technology has become even more powerful. In this chapter we describe a case in which model-based inversion, coupled with computational electromagnetics, can be effectively used to solve complex coating problems.

Keywords

Thermal Barrier Coating Inversion Algorithm Aluminide Coating Thermal Barrier Coat Interdiffusion Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Burrows, M.L.: A theory of eddy-current flaw detection. PhD Thesis, University of Michigan, University Microfilms, Inc., Ann Arbor, Michigan (1964)Google Scholar
  2. 2.
    Förster, F., Breitfeld, H.: Theoretische und Experimentelle Grundlagen der zerstörungsfreien Werkstoffprüfung mit Wirbelstromverfahren, (Parts I and II). Z. Metallkd. 43(5), 163–180 (1952)Google Scholar
  3. 3.
    Förster, F., Breitfeld, H., Stambke, K.: Theoretishe und Experimentelle Grundlagen der zerstörungsfreien Werkstoffprüfung mit Wirbelstromverfahren, (Parts III–VII). Z. Metallkd. 45(5), 166–199 and 221–226 (1954)Google Scholar
  4. 4.
    Dodd, C.V., Deeds, W.E.: Analytical solutions to eddy-current probe coil problems. J. Appl. Phys. 39(6), 2829–2838 (1968)Google Scholar
  5. 5.
    Luquire, J.W., Deeds, W.E., Dodd, C.V.: Alternating current distribution between planar conductors. J. Appl. Phys. 41(10), 3983–3991 (1970)Google Scholar
  6. 6.
    Cheng, C.C., Dodd, C.V., Deeds, W.E.: General analysis of probe coils near stratified conductors. Int. J. Nondestr. Test. 3, 109–130 (1971)Google Scholar
  7. 7.
    Nestor, C.W., Jr., Dodd, C.V., Deeds, W.E.: Analysis and computer programs for eddy current coils concentric with multiple cylindrical conductors. Report No. ORNL-5220, Oak Ridge National Laboratory, Oak Ridge, TN 37830, July 1979Google Scholar
  8. 8.
    Deeds, W.E., Dodd, C.V., Scott, G.W.: Computer-aided design of multifrequency eddy-current tests for layered conductors with multiple property variations. Report No. ORNL/TM-6858, Oak Ridge National Laboratory, Oak Ridge, TN 37830, October 1979Google Scholar
  9. 9.
    Miller, E.K.: Model-based parameter estimation in electromagnetics: III–applications to EM integral equations. Appl. Comput. Electrom. 10(3), 9–29 (1995)Google Scholar
  10. 10.
    Murphy, K., Sabbagh, H.A.: A boundary-integral code for electromagnetic nondestructive evaluation. In: Conference Proceedings: 12th Annual Review of Progress in Applied Computational Electromagnetics, Applied Computational Electromagnetics Society, 18–22 March 1996, pp. 171–178Google Scholar
  11. 11.
    Xie, H., Song, J., Yang, M., Nakagawa, N.: A novel boundary integral equation for surface crack model. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 29, pp. 329–336. American Institute of Physics, Melville (2010)Google Scholar
  12. 12.
    Harrington, R.F.: Field Computation by Moment Methods. The Macmillan Company, New York (1968)Google Scholar
  13. 13.
    Berreman, D.W.: Optics in Stratified and Anisotropic Media: 4 × 4-Matrix Formulation. J. Opt. Soc. Am. 62(4), 502–510 (April 1972)Google Scholar
  14. 14.
    Altman, C., Schatzberg, A.: Appl. Phys. B 28, 327–333 (1982)Google Scholar
  15. 15.
    Altman, C., Schatzberg, A.: Appl. Phys. B 26, 147–153 (1981)Google Scholar
  16. 16.
    Altman, C., Schatzberg, A., Suchy, K.: IEEE Trans. Antenn. Propag. AP-32(11) (November 1984)Google Scholar
  17. 17.
    Schatzberg, A., Altman, C.: J. Plasma Phys. 26(Part 2), 333–344 (1981)Google Scholar
  18. 18.
    Suchy, K., Altman, C.: J. Plasma Phys. 13(Part 3), 437–449 (1975)Google Scholar
  19. 19.
    Krowne, C.M.: IEEE Antennas and Propagation Symposium Digest, Boston, MA, 25–29 June 1984, pp. 569–572Google Scholar
  20. 20.
    Krowne, C.M.: IEEE Trans. Microw. Theor. Tech. MTT-32(12), 1617–1625 (December 1984)Google Scholar
  21. 21.
    Krowne, C.M.: IEEE Trans. Antenn. Propag. AP-32(11), 1224–1230 (November 1984).Google Scholar
  22. 22.
    Roberts, T.M., Sabbagh, H.A., Sabbagh, L.D.: Electromagnetic interactions with an anisotropic slab. IEEE Trans. Magn. 24(6), 3193–3200 (November 1988)Google Scholar
  23. 23.
    Roberts, T.M., Sabbagh, H.A., Sabbagh, L.D.: Electromagnetic scattering for a class of anisotropic layered media. J. Math. Phys. 29, 2675–2681 (December 1988)Google Scholar
  24. 24.
    Roberts, T.M.: Explicit eigenmodes for anisotropic media. IEEE Trans. Magn. 26(6), 3064–3071 (November 1990)Google Scholar
  25. 25.
    Bowler, J.R., Sabbagh, L.D., Sabbagh, H.A.: A theoretical and computational model of eddy-current probes incorporating volume integral and conjugate gradient methods. IEEE Trans. Magn. 25(3), pp. 2650–2664 (May 1989)Google Scholar
  26. 26.
    Sabbagh, H.A., Bowler, J.R., Sabbagh, L.D.: A model of eddy-current probes with ferrite cores. Nondestr. Test. Eval. 5(1), 67–79 (1989)Google Scholar
  27. 27.
    Sabbagh, H.A.: A model of eddy-current probes with ferrite cores. IEEE Trans. Magn. MAG-23(3), 1888–1904 (May 1987)Google Scholar
  28. 28.
    Sabbagh, H.A., Sabbagh, L.D., Bowler, J.R.: A volume-integral code for eddy-current nondestructive evaluation. Int. J. Comput. Math. Elec. Electron. Eng. 9(Suppl. A), 67–70 (1990)Google Scholar
  29. 29.
    Bowler, J.R., Sabbagh, L.D., Sabbagh, H.A.: Eddy-current probe impedance due to a surface slot in a conductor. IEEE Trans. Magn. 26(2), 889–892 (March 1990)Google Scholar
  30. 30.
    Rao, S.M., Wilton, D.R., Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antenn. Propag. AP-30(3), 409–418 (May 1982)Google Scholar
  31. 31.
    Aubin, J-P.: Approximation of Elliptic Boundary-Value Problems. Wiley-Interscience, New York (1972)Google Scholar
  32. 32.
    Glisson, A.W., Wilton, D.R.: Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces. IEEE Trans. Antenn. Propag. AP-29, 593–603 (1980)Google Scholar
  33. 33.
    Wertgen, W., Jansen, R.H.: Efficient direct and iterative electrodynamic analysis of geometrically complex MIC and MMIC structures. Int. J. Numer. Model. Electron. Network. Dev. Field. 2(3), 153–186 (September 1989)Google Scholar
  34. 34.
    Yaghjian, A.D.: Electric dyadic Green’s functions in the source region. Proc. IEEE. 68, 248–263 (February 1980)Google Scholar
  35. 35.
    Burke, G.J., Dease, C.G., Didwall, E.M., Lytle, R.J.: Numerical modeling of subsurface communication. UCID-20439 Rev. 1, Lawrence Livermore National Laboratory, August 1985Google Scholar
  36. 36.
    Catedra, M.F., Gago, E., Nuño, L.: A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform. IEEE Trans. Antenn. Propag. 37(5), 528–537 (May 1989)Google Scholar
  37. 37.
    Peter, A., Zwamborn, M., van den Berg, P.M., Mooibroek, J., Koenis, F.T.C.: Computation of three-dimensional electromagnetic-field distributions in a human body using the weak form of the CGFFT method. Appl. Comput. Electrom. 7(2), 26–42 (Winter 1992)Google Scholar
  38. 38.
    Zwamborn, P., van den Berg, P.M.: The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems. IEEE Trans. Microw. Theor. Tech. 40(9), 1757–1766 (September 1992)Google Scholar
  39. 39.
    Sabbagh, H.A.: Splines and their reciprocal-bases in volume-integral equations. IEEE Trans. Magn. 29(6), 4142–4152 (November 1993)Google Scholar
  40. 40.
  41. 41.
    Dongarra, J.J., Moler, C.B., Bunch, J.R., Stewart, G.W.: LINPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1979)Google Scholar
  42. 42.
    Hestenes, M.: Conjugate Direction Methods in Optimization. Springer, New York (1980)Google Scholar
  43. 43.
    Sarkar, T.P.: Application of the Conjugate Gradient Method in Electromagnetics and Signal Processing. Elsevier, New York (1991)Google Scholar
  44. 44.
    Catedra, M.F., Torres, R.P., Basterrechea, J., Gago, E.: The CG-FFT Method: Application of Signal Processing Techniques to Electromagnetics. Artech House, Boston (1995)Google Scholar
  45. 45.
    Peterson, A., Ray, S., Mittra, R.: Computational Methods for Electromagnetics. IEEE, New York (1998)Google Scholar
  46. 46.
    Chew, W.C., Jin, J.M., Michielsssen, E., Song, J.M.: Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, Boston (2001)Google Scholar
  47. 47.
    Harrington, R.F.: Time-Harmonic Electromagnetic Fields. McGraw-Hill, New York (1961)Google Scholar
  48. 48.
    Collin, R.E.: Field Theory of Guided Waves. McGraw-Hill, New York (1960)Google Scholar
  49. 49.
    Sabbagh, H.A., Sabbagh, E.H., Murphy, R.K.: Recent advances in modeling eddy-current probes. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 21, pp. 423–429. American Institute of Physics, Melville (2002)Google Scholar
  50. 50.
    Wozencraft, J.M., Jacobs, I.M.: Principles of Communication Engineering. Wiley, New York (1965)Google Scholar
  51. 51.
    Umashankar, K.R., Nimmagadda, S., Taflove, A.: Numerical analysis of electromagnetic scattering by electrically large objects using spatial decomposition technique. IEEE Trans. Antenn. Propag. 40(8), 867–877 (August 1992)Google Scholar
  52. 52.
    Murphy, K., Sabbagh, H.A., Treece, J.C.: Thickness measurements with eddy-current probes: a simple inversion problem. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 13, pp. 927–934. Plenum Press, New York (1994)Google Scholar
  53. 53.
    Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Inc., Englewood Cliffs (1974)Google Scholar
  54. 54.
    Murphy, K., Sabbagh, H.A., Treece, J.C.: Some inversion problems in nondestructive evaluation. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 14, pp. 857–861. Plenum Press, New York (1995)Google Scholar
  55. 55.
    Baltzersen, O.: Model-based inversion of plate thickness and liftoff from eddy current probe coil measurements. Mat. Eval. 51, 72–76 (1993)Google Scholar
  56. 56.
    Förster, F. Libby, H.: Electromagnetic Testing, 2nd edn, pp. 178–179. The American Society or Nondestructive Testing, Columbus (1986)Google Scholar
  57. 57.
    Sabbagh, H.A., Murphy, R.K. Sabbagh, E.H.: Advances in modeling eddy-current NDE of ferromagnetic bodies. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 22, pp. 383–389. American Institute of Physics, Melville (2003)Google Scholar
  58. 58.
    Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods. Part I: clustering methods. Math. Program. 39, 27–56 (1987)Google Scholar
  59. 59.
    Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods Part II: multi level methods. Math. Program. 39, 57–78 (1987)Google Scholar
  60. 60.
    Byrd, R.H., Dert, C.L., Rinnooy Kan, A.H.G., Schnabel, R.B.: Concurrent stochastic methods for global optimization. Math. Program. 46, 1–29 (1990)Google Scholar
  61. 61.
    Nakhkash, M., Huang, Y., Fang, M.T.C.: Application of the multilevel single-linkage method to one-dimensional electromagnetic inverse scattering problem. IEEE Trans. Antenn. Propag. 47(11), 1658–1668 (November 1999)Google Scholar
  62. 62.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1983)Google Scholar
  63. 63.
    Rousseeuw, P., Yohai, V.: Robust regression by means of s-estimators. In: Robust and Nonlinear Time Series Analysis: Proceedings of a Workshop, pp. 256–272, 1984Google Scholar
  64. 64.
    Van Trees, H.L.: Detection, Estimation, and Modulation Theory: Part I. Wiley, New York (1968)Google Scholar
  65. 65.
    Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Inc., Upper Saddle River (1993)Google Scholar
  66. 66.
    Devaney, A.J., Tsihrintzis, G.A.: Maximum likelihood estimation of object location in diffraction tomography. IEEE Trans. Signal Process. 39(3), 672–682 (March 1991)Google Scholar
  67. 67.
    Herman, G.T., Lent, A., Hurwitz, H.: A storage-efficient algorithm for finding the regularized solution of a large, inconsistent system of equations. J. Inst. Math. Appl. 25, 361–366 (1980)Google Scholar
  68. 68.
    Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23, 444–446 (October 1981)Google Scholar
  69. 69.
    Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imag. 12(3), 600–609 (September 1993)Google Scholar
  70. 70.
    Sabbagh, H.A., Sabbagh, L.D., Vernon, S.N.: Verification of an eddy-current flaw inversion algorithm. IEEE Trans. Magn. 22(6), 1881–1886 (November 1986)Google Scholar
  71. 71.
    Papoulis, A.: A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans. Circ. Syst. CAS-22, 735–742 (1975)Google Scholar
  72. 72.
    Youla, D.C.: Generalized image restoration by the method of alternating orthogonal projections. IEEE Trans. Circ. Syst. CAS-25, 694–702 (1978)Google Scholar
  73. 73.
    Youla, D.C., Webb, H.: Image restoration by the method of convex projections: Part 1-Theory. IEEE Trans. Med. Imag. MI-1, 81–94 (October 1982)Google Scholar
  74. 74.
    Sezan, M.I., Stark, H.: Image restoration by the method of convex projections: Part 2-applications and numerical results. IEEE Trans. Med. Imag. MI-1, 95–101 (October 1982)Google Scholar
  75. 75.
    Oskoui-Fard, P., Stark, H.: Tomographic image reconstruction using the theory of convex projections. IEEE Trans. Med. Imag. 7(1), 45–58 (March 1988)Google Scholar
  76. 76.
    Bucci, O.M., D’Elia, G., Mazzarella, G., Panariello, G.: Antenna pattern synthesis: a new general approach. Proc. IEEE. 82(3), 358–371 (March 1994)Google Scholar
  77. 77.
    Oh, S., Marks II, R.J., Atlas, L.E.: Kernel synthesis for generalized time-frequency distributions using the method of alternating projections onto convex sets. IEEE Trans. Signal Process. 42(7), 1653–1661 (July 1994)Google Scholar
  78. 78.
    Lent, A., Tuy, H.: An iterative method for the extrapolation of band limited functions. J. Math. Anal. Appl. 83, 554–565 (1981)Google Scholar
  79. 79.
    Kaczmarz, S.: Angenaherte auflosung von systemen linearer gleichungen. Bull. Pol. Acad. Sci. Lett. A, 6–8A, 355–357 (1937)Google Scholar
  80. 80.
    Tanabe, K.: Projection method for solving a singular system. Numer. Math. 17, 203–214 (1971)Google Scholar
  81. 81.
    Hounsfield, G.N.: A method of and apparatus for examination of a body by radiation such as x-ray or gamma radiation. Patent Specification 1283915, The Patent Office (1972)Google Scholar
  82. 82.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)Google Scholar
  83. 83.
    Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, San Francisco (1968)Google Scholar
  84. 84.
    Pratt, W.K.: Digital Image Processing. Wiley, New York (1978).Google Scholar
  85. 85.
    Sabbagh, L.D., Sabbagh, H.A., Klopfenstein, J.S.: Image enhancement via extrapolation techniques: a two dimensional iterative scheme and a direct matrix inversion scheme. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 5, pp. 473–483. Plenum Press, New York (1986)Google Scholar
  86. 86.
    Sabbagh, L.D., Sabbagh, H.A.: Inversion of eddy current data and the reconstruction of flaws Part 2: inversion of data. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 6, pp. 619–626. Plenum Press, New York (1987)Google Scholar
  87. 87.
    Sabbagh, L.D., Sabbagh, H.A.: Eddy-current modeling and flaw reconstruction. J. Nondestr. Eval. 7(1/2), 95–110 (1988)Google Scholar
  88. 88.
    Sabbagh, H.A., Sabbagh, L.D.: An eddy-current model for three-dimensional inversion. IEEE Trans. Magn. MAG-22(4), 282–291 (July 1986)Google Scholar
  89. 89.
    Sabbagh, L.D., Sabbagh, H.A.: Eddy current modeling and signal processing in NDE. In: Chen, C.H. (ed.) Signal Processing and Pattern Recognition in Nondestructive Evaluation of Materials: NATO ASI Series, vol. F44, pp. 145–154. Springer, Berlin (1988)Google Scholar
  90. 90.
    Theodoulidis, T.P., Poulakis, N., Bowler, J.R.: Developments in modeling eddy current coil interactions with a right-angled conductive wedge. In: Takahashi, S., Kikuchi, H. (eds.) Electromagnetic Nondestructive Evaluation X, pp 41–48. IOS Press, Amsterdam (2007)Google Scholar
  91. 91.
    Sabbagh, H.A., Sabbagh, L.D., Roberts, T.M.: An eddy-current model and algorithm for three-dimensional nondestructive evaluation of advanced composites. IEEE Trans. Magn. 24(6), 3201–3212 (November 1988)Google Scholar
  92. 92.
    Murphy, K., Sabbagh, H.A. Treece, J.C.: Verification of a model of eddy-current probes with ferrite cores. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation, vol. 13, pp. 1089–1093. Plenum Press, New York (1994)Google Scholar
  93. 93.
    Mittleman, D.M., Jacobsen, R.H., Buss, M.C.: T-ray imaging. IEEE J. Sel. Top. Quant. Electron. 2(3), 679–692 (September 1996)Google Scholar
  94. 94.
    Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1969)Google Scholar
  95. 95.
    Sabbagh, H.A., Murphy, R.K., Woo, L.W., Sabbagh, E.H., Krzywosz, K.: Recent advances in modeling eddy-current probe-flaw interactions. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 15, pp. 331–338. Plenum Press, New York (1996)Google Scholar
  96. 96.
    Burke, S.K., Ditchburn, R.J.: Mutual impedance of planar eddy-current driver-pickup spiral coils. Res. Nondestr. Eval. 19, 1–19 (2008)Google Scholar
  97. 97.
    Moré, J.J., Garbow, B.S., Hillstrom, K.E.: USER GUIDE FOR MINPACK-1. ANL-80-74, Argonne National Laboratory, August 1980Google Scholar
  98. 98.
    Collin, R.E.: Foundations for Microwave Engineering, Chap. 4. McGraw-Hill Book Company, New York (1966)Google Scholar
  99. 99.
    Sabbagh, H.A., Sabbagh, E.H., Murphy, R.K., Nyenhuis, J.: Assessing thermal barrier coatings by eddy current inversion. Mater. Eval. 59(11), 1307–1312 (November 2001)Google Scholar
  100. 100.
    Sabbagh, H.A., Sabbagh, E.H., Murphy, R.K., Nyenhuis, J.: Assessing thermal barrier coatings by eddy current inversion. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 21, pp. 722–727. American Institute of Physics, Melville (2002)Google Scholar
  101. 101.
    Wang, S. Solid-State Electronics. McGraw-Hill Book Company, New York (1966)Google Scholar
  102. 102.
    Knopp, J.S., Aldrin, J.C., Misra, P.: Considerations in the validation and application of models for eddy current inspection of cracks around fastener holes. J. Nondestr. Eval. 25(3), 123–138 (2006)Google Scholar
  103. 103.
    Carpenter, D.C.: Use of the finite element method in simulation and visualization of electromagnetic nondestructive testing applications. Mater. Eval. 58(7), 877–881 (2000)Google Scholar
  104. 104.
    Palanisamy, R., Lord, W.: Prediction of eddy current probe signal trajectories. IEEE Trans. Magn. 16(5), 1083–1085 (1980)Google Scholar
  105. 105.
    Knopp, J.S., Aldrin, J.C., Sabbagh, H.A., Jata, K.V.: Estimation theory metrics in electromagnetic NDE, electromagnetic nondestructive evaluation workshop proceedings, Seoul, Korea, 10–12 June 2008Google Scholar
  106. 106.
    Trefethen, L.N. Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)Google Scholar
  107. 107.
    Sabbagh, H.A., Murphy, R.K., Sabbagh, E.H. Aldrin, J.C., Knopp, J., Blodgett, M.: Computational electromagnetics and model-based inversion: a modern paradigm for eddy-current nondestructive evaluation. Appl. Comput. Electrom. 24(6), 533–540 (December 2009)Google Scholar
  108. 108.
    Sabbagh, E.M.: Circuit Analysis. Ronald Press Company, New York (1961)Google Scholar
  109. 109.
    Ramo, S., Whinnery, J.R., Van Duzer, T.: Fields and Waves in Communication Electronics. Wiley, New York (1965)Google Scholar
  110. 110.
    Vernon, S.N.: The universal impedance diagram of the ferrite pot core eddy current transducer. IEEE Trans. Magn. 25(3), 2639–2645 (May 1989)Google Scholar
  111. 111.
    Bowler, J.R., Sabbagh, L.D., Sabbagh, H.A.: The reduced impedance function for cup-core eddy-current probes. IEEE Trans. Magn. 25(3), 2646–2649 (May 1989)Google Scholar
  112. 112.
    ’Validation of Direct and Inverse Models of SEACURE Ferritic Tubes With Benchmark Data,’ PID069961, Technical Update, October 2010, Electrical Power Research Institute. Prepared by Victor Technologies, LLCGoogle Scholar
  113. 113.
    Todorov, E., Levesque, S., Ames, N., Krzywosz, K.: Measurement of magnetic properites of ferromagnetic tubes for heat exchangers. Trans. Am. Nucl. Soc. 104, 297–298 (26–30 June 2011, Hollywood, Florida)Google Scholar
  114. 114.
    Scully, J.R.: Hidden corrosion, What Should Be Measured to Improve Emerging Anticipate and Manage Strategies, 32nd Annual Review of Progress In Quantitative Non-destructive Evaluation, QNDE-Brunswick, Maine (2005)Google Scholar
  115. 115.
    Tian, Y., Tamburrino, A., Udpa, S.S., Udpa, L.: Time-of-flight measurements from eddy current tests. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 22, pp. 593–600. American Institute of Physics, Melville (2003)Google Scholar
  116. 116.
    Liu, Z., Safizadeh, M.-S. Forsyth, D.S., Lepine, B.A.: Data fusion method for the optimal mixing of multi-frequency eddy current signals. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 22, pp. 577–584. American Institute of Physics, Melville (2003)Google Scholar
  117. 117.
    Liu, X., Deng, Y., Zeng, Z., Udpa, L., Knopp, J.: Model based inversion technique of GMR signals using element-free Galerkin method. In: Conference Proceedings: 24th Annual Review of Progress in Applied Computational Electromagnetics, Applied Computational Electromagnetics Society, pp. 221–226 (2008)Google Scholar
  118. 118.
    Gray, J.N., Gray, T.A., Nakagawa, N., Thompson, R.B.: Models for predicting NDE reliability, nondestructive evaluation and quality control, Metals Handbook 17, pp 702–715. ASM International, Ohio, 1989Google Scholar
  119. 119.
    Thompson, R.B.: Using Physical Models of the Testing Process in Determination of Probability of Detection. Mater. Eval. 69(7), 861–865 (2001)Google Scholar
  120. 120.
    Thompson, R. B.: A unified approach to the model-assisted determination of probability of detection. Mater. Eval. 66, 667–673 (2008)Google Scholar
  121. 121.
    U.S. Department of Defense, Handbook, Nondestructive Evaluation System Reliability Assessment, MIL-HDBK-1823A, 7 April 2009Google Scholar
  122. 122.
    Smith, K.D., Thompson, R.B., Brasche, L.: Model-Based POD: Successes and Opportunities, 1st Meeting of the MAPOD Working Group, Albuquerque, New Mexico, 23–24 September 2004. Web site: http://www.cnde.iastate.edu/MAPOD/
  123. 123.
    Harding, C., Hugo, G., Bowles, S.: Model-assisted Probability of Detection Validation of Automated Ultrasonic Scanning for Crack Detection at Fastener Holes, Proceedings of the 10th Joint FAA/DoD/NASA Conference on Aging Aircraft, Palm Springs, CA, 16–19 April 2007Google Scholar
  124. 124.
    Aldrin, J.C., Knopp, J.S., Lindgren E.A., Jata, K.V.: Model-assisted probability of detection (MAPOD) evaluation for eddy current inspection of fastener sites. Rev. progr. Quant. Nondestr. Eval. 28, AIP, 1784–1791 (2009)Google Scholar
  125. 125.
    Aldrin, J.C., Medina, E.A., Lindgren, E.A., Buynak, C., Knopp, J.: Case studies for model-assisted probabilistic reliability assessment for structural health monitoring systems. Rev. progr. Quant. Nondestr. Eval. 30, AIP, 1589–1596 (2011)Google Scholar
  126. 126.
    Aldrin, J.C., Medina, E.A., Lindgren, E.A., Buynak, C.F., Knopp, J.S.: Protocol for reliability assessment of structural health monitoring systems incorporating model-assisted probability of detection (MAPOD) approach. In: Chang, F.-K. (ed.) Proceedings of the 8th International Workshop on Structural Health Monitoring, Stanford, 13–15 September 2011Google Scholar
  127. 127.
    Aldrin, J.C., Medina, E.A., Santiago, J., Lindgren, E.A., Buynak, C.F., Knopp, J.S.: Demonstration study for reliability assessment of SHM systems incorporating model-assisted probability of detection approach. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 31, pp. 1543–1550. American Institute of Physics, Melville (2012)Google Scholar
  128. 128.
    Aldrin, J.C., Sabbagh, H.A., Murphy, R.K., Sabbagh, E.H., Knopp, J.S., Lindgren, E.A., Cherry, M.R.: Demonstration of model-assisted probability of detection evaluation methodology for eddy-current nondestructive evaluation. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 31, pp. 1733–1740. American Institute of Physics, Melville (2012)Google Scholar
  129. 129.
    Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing. Cambridge University Press, New York (2010)Google Scholar
  130. 130.
    Knopp, Knopp, J.S., Aldrin, J.C., Blodgett, M.P.: Efficient Propagation of Uncertainty in Simulations via the Probabilistic Collocation Method. In: Chady, T., Gratkowski, S., Takagi, T., Udpa, S.S. (eds) Electromagnetic Nondestructive Evaluation (XIV), pp. 141–148 IOS Press, Amsterdam (2011)Google Scholar
  131. 131.
    Frey, H.C.: Quantitative analysis of uncertainty and variability in environmental policy making. Fellowship Program for Environmental Science and Engineering, American Association for the Advancement of Science, Washington, DC (1992)Google Scholar
  132. 132.
    Mahadevan, S., Rebba, R.: Validation of reliability computational models using Bayes networks. Reliab. Eng. Syst. Saf. 87, 223–232 (2005)Google Scholar
  133. 133.
    Knopp, J.S., Aldrin, J.C., Lindgren, E., Annis, C.: Investigation of a model-assisted approach to probability of detection evaluation. Rev. Prog. Quant. Nondestr. Eval. 26, 1775–1782 (2007)Google Scholar
  134. 134.
    Aldrin, J.C., Knopp, J.S.: Modeling and simulation for nondestructive testing with applications to aerospace structures. Mater. Eval. 66(1), 53–59 (2008)Google Scholar
  135. 135.
    Knopp, J.S., Aldrin, J.C., Misra, P.: Considerations in the validation and application of models for eddy current inspection of cracks around fastener holes. J. Nondestr. Eval. 25(3), 123–138 (2006)Google Scholar
  136. 136.
    Dominguez, N., Feuillard, V., Jenson, F., Willaume, P.: Simulation assisted POD of a phased array ultrasonic inspection in manufacturing. Rev. Progr. Quant. Nondestr. Eval. 31, AIP, 1765–1772 (2012)Google Scholar
  137. 137.
    Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. B 63, 425–464 (2001)Google Scholar
  138. 138.
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. CRC, London (2003)Google Scholar
  139. 139.
    Christensen, R., Johnson, W., Branscum, A.: Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians. CRC, Boca Raton (2010)Google Scholar
  140. 140.
    Meeker, W.Q., Escobar, L.A.: Introduction to the use of Bayesian methods for reliability data. In: Statistical Methods for Reliability Data, pp. 343–368. Wiley, New York (1998)Google Scholar
  141. 141.
    Thompson, R.B.: A Bayesian approach to the inversion of NDE and SHM data. Rev. Progr. Quant. Nondestr. Eval. 29, AIP, 679–686 (2010)Google Scholar
  142. 142.
    Leemans, D.V., Forsyth, D.: Bayesian approaches to using field test data in determining the probability of detection. Mater. Eval. 62, 855–859 (2004)Google Scholar
  143. 143.
    Knopp, J.S., Zeng, L.: Statistical analysis of hit/miss data. Mater. Eval. 71(3), 323–329 (2013)Google Scholar
  144. 144.
    Li, M., Meeker, W.Q., Hovey, P.: Joint estimation of NDE inspection capability and flaw-size distribution for in-service aircraft inspections. Res. Nondestr. Eval. 23, 104–123 (2012)Google Scholar
  145. 145.
    Aldrin, J.C., Knopp, J.S., Sabbagh, H.A.: Bayesian methods in probability of detection estimation and model-assisted probability of detection evaluation. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 32, pp. 1733–1740. American Institute of Physics, Melville (2013)Google Scholar
  146. 146.
    Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge (2007)Google Scholar
  147. 147.
    ASTM Standard E2782-11. Standard Guide for Measurement Systems Analysis (MSA). ASTM International, West Conshohocken, PA, DOI: 10.1520/E2782-11 (2011). www.astm.org

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Harold A. Sabbagh
    • 1
  • R. Kim Murphy
    • 1
  • Elias H. Sabbagh
    • 1
  • John C. Aldrin
    • 2
  • Jeremy S. Knopp
    • 3
  1. 1.Victor Technologies, LLCBloomingtonUSA
  2. 2.Computational ToolsGurneeUSA
  3. 3.Air Force Research Laboratory (AFRL/RXLP)Wright-Patterson AFBUSA

Personalised recommendations