Skip to main content

DPE for Network Generation

  • Chapter
  • First Online:
Dual Phase Evolution

Abstract

Many scientists have mainly focused their attention on growing networks in which a new node is added to networks with time [1]. However, as indicated by Jin et al. [2], growth models of this type are quite inappropriate as models of the growth of social networks, and one of the reasons is although new vertices are of course added to social networks all the time, the timescale on which people make and break social connections is much shorter than the timescale on which vertices join or leave the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. E.M. Jin, M. Girvan, M.E.J. Newman, Structure of growing social networks. Phys. Rev. E 64, 046132 (2001)

    Article  Google Scholar 

  3. M.C. González, P.G. Lind, H.J. Herrmann, System of mobile agents to model social networks. Phys. Rev. Lett. 96, 088702 (2006)

    Article  Google Scholar 

  4. J.M. Kumpula, J.P. Onnela, J. Saramki, K. Kaski, J. Kertész, Emergence of communities in weighted networks. Phys. Rev. Lett. 99, 228701 (2007)

    Article  Google Scholar 

  5. H.M. Singer, I. Singer, H.J. Herrmann, Agent-based model for friendship in social networks. Phys. Rev. E 80, 026113 (2009)

    Article  Google Scholar 

  6. D.J. Watts, S.H. Strogatz, Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  7. Z. Burda, J.D. Correia, A. Krzywicki, Statistical ensemble of scale-free random graphs. Phys. Rev. E 64, 046118 (2001)

    Article  Google Scholar 

  8. K. Park, Y.C. Lai, N. Ye, Self-organized scale-free networks. Phys. Rev. E 72, 026131 (2005)

    Article  Google Scholar 

  9. Y.B. Xie, T. Zhou, B.H. Wang, Scale-free networks without growth. Phys. A 387, 1683–1688 (2008)

    Article  Google Scholar 

  10. J. Ohkubo, K. Tanaka, T. Horiguchi, Generation of complex bipartite graphs by using a preferential rewiring process. Phys. Rev. E 72, 036120 (2005)

    Article  Google Scholar 

  11. C. Godrèche, J.P. Bouchaud, M. Mézard, Entropy barriers and slow relaxation in some random walk models. J. Phys. A 28(23), L603 (1995)

    Article  Google Scholar 

  12. C. Godrèche and J. M. Luck. Nonequilibrium critical dynamics of ferromagnetic spin systems. J. Phys.: Condens. Matter, 14(7):1589, 2002.

    Google Scholar 

  13. J. Ohkubo, M. Yasuda, and K. Tanaka. Preferential urn model and nongrowing complex networks. Phys. Rev. E, 72:065104(R), 2005.

    Google Scholar 

  14. J. Ohkubo, M. Yasuda, K. Tanaka, Replica analysis of preferential urn model. J. Phys. Soc. Jpn. 75, 074802 (2006)

    Article  Google Scholar 

  15. M.R. Evans, Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30(1), 42 (2000)

    Article  Google Scholar 

  16. M.R. Evans, T. Hanney, Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A 38(19), R195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Pulkkinen, J. Merikoski, Phase transitions on markovian bipartite graphs—an application of the zero-range process. J. Stat. Phys. 119, 881 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. F.D. Neiman, Stylistic variation in evolutionary perspective: inferences from decorative diversity and interassemblage distance in illinois woodland ceramic assemblages. Am. Antiq. 60(1), 7–36 (1995)

    Article  Google Scholar 

  19. R.A. Bentley, S.J. Shennan, Cultural evolution and stochastic network growth. Am. Antiq. 68(3), 459–485 (2003)

    Article  Google Scholar 

  20. M.W. Hahn, R.A. Bentley, Drift as a mechanism for cultural change: an example from baby names. Proc. R. Soc. London, Ser. B 270, S120–S123 (2003)

    Article  Google Scholar 

  21. H.A. Herzog, R.A. Bentley, M.W. Hahn, Random drift and large shifts in popularity of dog breeds. Proc. R. Soc. London, Ser. B 271, S353–S356 (2004)

    Article  Google Scholar 

  22. R.A. Bentley, M.W. Hahn, S.J. Shennan, Random drift and culture change. Proc. R. Soc. London, Ser. B 271, 1443–1450 (2004)

    Article  Google Scholar 

  23. R.A. Bentley, S.J. Shennan, Random copying and cultural evolution. Science 309(5736), 877–879 (2005)

    Article  Google Scholar 

  24. D. Zanette, S. Manrubia, Vertical transmission of culture and the distribution of family names. Phys. A 295, 1–8 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Kimura, J.F. Crow, The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964)

    Google Scholar 

  26. J.F. Crow, M. Kimura, An Introduction to Population Genetics Theory (Harper and Row, New York, 1970)

    MATH  Google Scholar 

  27. T.M. Liggett, Interacting Particle Systems (Springer, New York, 1985)

    Book  MATH  Google Scholar 

  28. V. Sood, S. Redner, Voter model on heterogeneous graphs. Phys. Rev. Lett. 94, 178701 (2005)

    Article  Google Scholar 

  29. M. Anghel, Z. Toroczkai, K.E. Bassler, G. Korniss, Competition-driven network dynamics: emergence of a scale-free leadership structure and collective efficiency. Phys. Rev. Lett. 92, 058701 (2004)

    Article  Google Scholar 

  30. T.S. Evans, A.D.K. Plato, Exact solution for the time evolution of network rewiring models. Phys. Rev. E 75, 056101 (2007)

    Article  MathSciNet  Google Scholar 

  31. A. Grönlund, P. Holme, Networking the seceder model: Group formation in social and economic systems. Phys. Rev. E 70, 036108 (2004)

    Article  Google Scholar 

  32. P. Dittrich, F. Liljeros, A. Soulier, W. Banzhaf, Spontaneous group formation in the seceder model. Phys. Rev. Lett. 84, 3205 (2000)

    Article  Google Scholar 

  33. P. Dittrich, The seceder effect in bounded space. InterJournal, 363, (2000)

    Google Scholar 

  34. A. Soulier, T. Halpin-Healy, The dynamics of multidimensional secession: fixed points and ideological condensation. Phys. Rev. Lett. 90, 258103 (2003)

    Article  Google Scholar 

  35. P. Erdős, A. Rényi, On random graphs. Publ. Math. (Debrecen) 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  36. T.G. Leishman, D.G. Green, S. Driver, Self-organization in simulated social networks, in Computer Mediated Social Networking LNAI5322, ed. by M. Purvis, B.T.R. Savarimuthu (Springer, Berlin, 2009), pp. 150–156

    Chapter  Google Scholar 

  37. G. Paperin, D.G. Green, T.G. Leishman, Dual phase evolution and self-organisation in networks, in Proceedings of the 7th International Conference on Simulated Evolution and Learning eds. by X. Li, M. Kirley, M. Zhang, D. Green, V. Ciesielski, H. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K.C. Tan, J. Branke, Y. Shi, Melbourne, Australia (Springer, 2008)

    Google Scholar 

  38. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  39. D.J. Watts, P.S. Dodds, M.E.J. Newman, Identity and search in social networks. Science 296(5571), 1302–1305 (2002)

    Article  Google Scholar 

  40. A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008)

    Article  Google Scholar 

  41. G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  42. R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, A. Arenas, Self-similar community structure in a network of human interactions. Phys. Rev. E. 68, 065103(R) (2003)

    Article  Google Scholar 

  43. G. Caldarelli, A. Vespignani (eds.), Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science (World Scientific, Singapore, 2007)

    Google Scholar 

  44. A. Clauset, M.E.J. Newman, C. Moore, Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Green .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Green, D.G., Liu, J., Abbass, H.A. (2014). DPE for Network Generation. In: Dual Phase Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8423-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8423-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8422-7

  • Online ISBN: 978-1-4419-8423-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics