Skip to main content

Discovery of Novel Antifolate Inhibitors of De Novo Purine Nucleotide Biosynthesis with Selectivity for High Affinity Folate Receptors and the Proton-Coupled Folate Transporter Over the Reduced Folate Carrier for Cellular Entry

  • Chapter
  • First Online:
Targeted Drug Strategies for Cancer and Inflammation

Abstract

Lack of drug selectivity is one of the major causes of the failure of cancer chemotherapy. This Chapter describes studies that explore the concept of therapeutic targeting solid tumors using folate-receptor (FR) and proton-coupled folate transporter (PCFT)-targeted antifolates that exhibit limited transport by the ubiquitously expressed reduced folate carrier (RFC). We describe our recent studies with novel 6-substituted pyrrolo- and thieno[2,3-d]pyrimidine antifolates as selective substrates of FR and PCFT over RFC, which are potent inhibitors of de novo purine nucleotide biosynthesis at β-glycinamide ribonucleotide formyltransferase. Our results document potent in vitro and in vivo antitumor activities for the lead compounds of these series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AICARFTase:

5-Amino-4-imidazolecarboxamide ribonucleotide formyltransferase

CHO:

Chinese hamster ovary

FGAR:

Formyl glycinamide ribonucleotide

FR:

Folate receptor

GAR:

Glycinamide ribonucleotide

GARFTase:

Glycinamide ribonucleotide formyltransferase

IC50 :

Fifty percent inhibition

LCV:

Leucovorin

LMTX:

Lometrexol

MTX:

Methotrexate

PCFT:

Proton-coupled folate transporter

PMX:

Pemetrexed

RFC:

Reduced folate carrier

RTX:

Raltitrexed

SCID:

Severe combined immunodeficient

References

  • Boritzki TJ, Zhang C, Bartlett CA, Jackson RC (1999) AG2034. A GARFT inhibitor with selective cytotoxicity to cells that lack a G1 checkpoint. In: Jackman AL (ed) Anticancer development guide: antifolate drugs in cancer therapy. Humana Press, Totowa, pp 281–292

    Google Scholar 

  • Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A (2008) Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyl transferase inhibitors with antitumor activity. J Med Chem. 51:5052–5063

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Zhou X, Kugel Desmoulin S, Wu J, Cherian C, Hou Z, Matherly LH, Gangjee A (2009) Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J Med Chem 52:2940–2951

    Article  PubMed  CAS  Google Scholar 

  • Diop-Bove NK, Wu J, Zhao R, Locker J, Goldman ID (2009) Hypermethylation of the human proton-coupled folate transporter (SLC46A1) minimal transcriptional regulatory region in an antifolate-resistant HeLa cell line. Mol Cancer Ther 8:2424–2431

    Article  PubMed  CAS  Google Scholar 

  • Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv 56:1067–1084

    Article  CAS  Google Scholar 

  • Gangjee A, Zeng Y, McGuire JJ, Mehraein F, Kisliuk RL (2004) Synthesis of classical, three-carbon-bridged 5-substituted furo[2, 3-d]pyrimidine and 6-substituted pyrrolo[2, 3-d]pyrimidine analogues as antifolates. J Med Chem 47:6893–6901

    Article  PubMed  CAS  Google Scholar 

  • Gangjee A, Zeng Y, McGuire JJ, Kisliuk RL (2005) Synthesis of classical, four-carbon bridged 5-substituted furo[2, 3-d]pyrimidine and 6-substituted pyrrolo[2, 3-d]pyrimidine analogues as antifolates. J Med Chem 48:5329–5336

    Article  PubMed  CAS  Google Scholar 

  • Gibbs DD, Theti DS, Wood N, Green M, Raynaud F, Valenti M, Forster MD, Mitchell F, Bavetsias V, Henderson E, Jackman AL (2005) BGC 945, A novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res 65:11721–11728

    Article  PubMed  CAS  Google Scholar 

  • Gonen N, Bram EE, Assaraf YG (2008) PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells. Biochem Biophys Res Commun 376:787–792

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    Article  PubMed  CAS  Google Scholar 

  • Hughes LR, Stephens TC, Boyle FT, Jackman AL (1999) Raltitrexed (Tomudex™), a highly polyglutamatable antifolate thymidylate synthase inhibitor. In: Jackman AL (ed) Anticancer development guide: antifolate drugs in cancer therapy. Humana Press, Totowa, pp 147–165

    Google Scholar 

  • Jackman AL, Jansen G, Ng M (2011). Folate receptor targeted thymidylate synthase inhibitors. Targeted drug strategies for cancer and inflammation. Springer, New York

    Google Scholar 

  • Jansen G (1999) Receptor- and carrier-mediated transport systems for folates and antifolates. Exploitation for folate chemotherapy and immunotherapy. In: Jackman AL (ed) Anticancer development guide: antifolate drugs in cancer therapy. Humana Press, Totowa, pp 293–321

    Google Scholar 

  • Kugel Desmoulin S, Wang Y, Wu J, Stout M, Hou Z, Fulterer A, Chang M-H, Romero MF, Cherian C, Gangjee A, Matherly LH (2010) Targeting the proton-coupled folate transporter for selective delivery of 6-substituted pyrrolo[2, 3-d]pyrimidine antifolate inhibitors of de novo purine biosynthesis in the chemotherapy of solid. Mol Pharm 78:577–587

    Article  Google Scholar 

  • Leamon CP, Reddy JA, Vlahov IR, Westrick E, Dawson A, Dorton R, Vetzel M, Santhapuram HK, Wang Y (2007) Preclinical antitumor activity of a novel folate-targeted dual drug conjugate. Mol Pharm 4:659–667

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Wu J, Gonit M, Yang X, Lee A, Xiang G, Li H, Liu S, Marcucci G, Ratnam M, Lee RJ (2007) Role of formulation composition in folate receptor-targeted liposomal doxorubicin delivery to acute myelogenous leukemia cells. Mol Pharm 4:707–712

    Article  PubMed  CAS  Google Scholar 

  • Matherly LH, Hou Z, Deng Y (2007) Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 26:111–128

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn LG, Worzalla JF, Walling JM (1999) Preclinical and clinical evaluation of the glycinamide ribonucleotide formyltransferase inhibitors lometrexol and LY309887. In: Jackman AL (ed) Anticancer development guide: antifolate drugs in cancer therapy. Humana Press, Totowa, pp 261–280

    Google Scholar 

  • Muller C, Forrer F, Schibli R, Krenning EP, de Jong M (2008) SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate. J Nucl Med 49:310–317

    Article  PubMed  Google Scholar 

  • Raghunand N, Altbach MI, van Sluis R, Baggett B, Taylor CW, Bhujwalla ZM, Gillies RJ (1999) Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochem Pharmacol 57:309–312

    Article  PubMed  CAS  Google Scholar 

  • Reddy JA, Haneline LS, Srour EF, Antony AC, Clapp DW, Low PS (1999) Expression and functional characterization of the beta-isoform of the folate receptor on CD34(+) cells. Blood 93:3940–3948

    PubMed  CAS  Google Scholar 

  • Taylor EC (1993) Design and synthesis of inhibitors of folate-dependent enzymes as antitumor agents. In: Ayling JE, Nair MG, Baugh CM (eds) Chemistry and biology of pteridines and folates, vol 338. Plenum Press, New York, pp 387–408

    Chapter  Google Scholar 

  • Theti DS, Bavetsias V, Skelton LA, Titley J, Gibbs D, Jansen G, Jackman AL (2003) Selective delivery of CB300638, A cyclopenta[g]quinazoline-based thymidylate synthase inhibitor into human tumor cell lines overexpressing the alpha-isoform of the folate receptor. Cancer Res 63:3612–3618

    PubMed  CAS  Google Scholar 

  • Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    Article  PubMed  Google Scholar 

  • Wang L, Cherian C, Desmoulin SK, Polin L, Deng Y, Wu J, Hou Z, White K, Kushner J, Matherly LH, Gangjee A (2010) Synthesis and biological activity of a novel series of 6-substituted pyrrolo[2, 3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry. J Med Chem 53:1306–1318

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Goldman ID (2003) Resistance to antifolates. Oncogene 22:7431–7457

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Goldman ID (2007) The molecular identity and characterization of a proton-coupled folate transporter – PCFT; biological ramifications and impact on the activity of pemetrexed. Cancer Metastasis Rev 26:129–139

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Gao F, Hanscom M, Goldman ID (2004) A prominent low-pH methotrexate transport activity in human solid tumors: contribution to the preservation of methotrexate pharmacologic activity in HeLa cells lacking the reduced folate carrier. Clin Cancer Res 10:718–727

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Matherly LH, Goldman ID (2009a) Membrane transporters and folate homeostasis; intestinal absorption, transport into systemic compartments and tissues. Expert Rev Mol Med 11:e4

    Article  PubMed  Google Scholar 

  • Zhao R, Min SH, Wang Y, Campanella E, Low PS, Goldman ID (2009b) A role for the proton-coupled folate transporter (PCFT-SLC46A1) in folate receptor-mediated endocytosis. J Biol Chem 284:4267–4274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health, National Cancer Institute, CA53535 (LHM), CA125153 (AG), and CA152316 (LHM and AG), a grant from the Mesothelioma Applied Research Foundation (LHM), and a pilot grant from the Barbara Ann Karmanos Cancer Institute (LHM). We acknowledge the contributions of present and past members of the Matherly and Gangjee laboratories who contributed to the studies described in this chapter. Special thanks go to Dr. Lisa Polin of the Karmanos Cancer Institute who performed the in vivo mouse experiments with compound 14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry H. Matherly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Matherly, L.H., Gangjee, A. (2011). Discovery of Novel Antifolate Inhibitors of De Novo Purine Nucleotide Biosynthesis with Selectivity for High Affinity Folate Receptors and the Proton-Coupled Folate Transporter Over the Reduced Folate Carrier for Cellular Entry. In: Jackman, A., Leamon, C. (eds) Targeted Drug Strategies for Cancer and Inflammation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8417-3_6

Download citation

Publish with us

Policies and ethics