Skip to main content

Folate Receptor Targeted Thymidylate Synthase Inhibitors

  • Chapter
  • First Online:

Abstract

Antifolate drugs used for cancer treatment lack the level of tissue ­targeting desired by the new drug development paradigm. This is because their most pharmacologically relevant cell membrane transporter (the reduced-folate carrier [RFC]) and intracellular targets are not tumor specific. A number of folate receptor (FR)-targeted agents for the imaging and treatment of cancer have entered clinical studies in the last few years. Tumor targeting is achievable because FRs, most notably FRα, are present and functionally active for folate transport in many tumors but not normal tissues. Evaluation of a range of antifolate drugs pointed to a low level of selectivity for FR-expressing tumor cells even when the RFC and FR were both expressed. However, clinical evidence suggests that uptake into normal proliferating tissues by the high capacity RFC remains a major hurdle such that it is not possible to realize their potential for FR-mediated tumor targeting. Compounds were discovered that were not substrates for the RFC and were, therefore, able to selectively target FR-expressing cultured cells. Here, data are discussed on the ­prototypical FRα-targeted thymidylate synthase (TS) inhibitor, ONX 0801 ­(formerly BGC 945; CB300945) which showed a remarkable level of tumor selectivity in vivo. Pharmacodynamic endpoints for TS inhibition have been developed and are being used in an ongoing Phase 1 clinical study. Finally, potential opportunities are discussed for therapeutic intervention of FRβ-expressing leukemias and inflammatory cells by TS inhibitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aherne GW, Brown S (1999) The role of uracil misincorporation in thyminesless death. In: Jackman AL (ed) Anticancer drug development guide: antifolate drugs in cancer therapy. Humana Press, Totowa, pp 409–421

    Google Scholar 

  • Allard JE, Risinger JI, Morrison C et al (2007) Overexpression of folate binding protein is associated with shortened progression-free survival in uterine adenocarcinomas. Gynecol Oncol 107(1):52–57

    Article  PubMed  CAS  Google Scholar 

  • Bagnoli M, Canevari S, Figini M et al (2003) A step further in understanding the biology of the folate receptor in ovarian carcinoma. Gynecol Oncol 88(1 Pt 2):S140–S144

    Article  PubMed  CAS  Google Scholar 

  • Bavetsias V, Jackman AL, Kimbell R et al (1996) Quinazoline antifolate thymidylate synthase inhibitors: gamma-linked L-D, D-D, and D-L dipeptide analogues of 2-desamino-2-methyl-N10-propargyl-5, 8-dideazafolic acid (ICI 198583). J Med Chem 39(1):73–85

    Article  PubMed  CAS  Google Scholar 

  • Bavetsias V, Marriott JH, Melin C et al (2000) Design and synthesis of Cyclopenta[g]quinazoline-based antifolates as inhibitors of thymidylate synthase and potential antitumor agents. J Med Chem 43(10):1910–1926

    Article  PubMed  CAS  Google Scholar 

  • Bavetsias V, Marriott JH, Theti DS et al (2001) Cyclopenta[g]quinazoline-based antifolates: the effect of the chirality at the 6-position on the inhibition of thymidylate synthase (TS). Bioorg Med Chem Lett 11(23):3015–3017

    Article  PubMed  CAS  Google Scholar 

  • Benepal T, Mitchell F, Gibbens I et al (2003) Estimation of plasma thymidine levels in healthy volunteers vs cancer patients by high performance liquid chromatography. Br J Cancer 88:S56

    Google Scholar 

  • Brown Jones M, Neuper C, Clayton A et al (2008) Rationale for folate receptor alpha targeted therapy in “high risk” endometrial carcinomas. Int J Cancer 123(7):1699–1703

    Article  PubMed  Google Scholar 

  • Bueno R, Appasani K, Mercer H et al (2001) The alpha folate receptor is highly activated in malignant pleural mesothelioma. J Thorac Cardiovasc Surg 121(2):225–233

    Article  PubMed  CAS  Google Scholar 

  • Calvert AH, Jones TR, Dady PJ et al (1980) Quinazoline antifolates with dual biochemical loci of action. Biochemical and biological studies directed towards overcoming methotrexate resistance. Eur J Cancer 16(5):713–722

    Article  PubMed  Google Scholar 

  • Chintalacharuvu S, Evans GF, Shih C et al (2005) Inhibition of glycinamide ribonucleotide formyltransferase results in selective inhibition of macrophage cytokine secretion in vitro and in vivo efficacy in rat adjuvant arthritis. Clin Exp Rheumatol 23(4):438–446

    PubMed  CAS  Google Scholar 

  • Chung KN, Saikawa Y, Paik TH et al (1993) Stable transfectants of human MCF-7 breast cancer cells with increased levels of the human folate receptor exhibit an increased sensitivity to antifolates. J Clin Invest 91(4):1289–1294

    Article  PubMed  CAS  Google Scholar 

  • Ciuleanu T, Brodowicz T, Zielinski C et al (2009) Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. Lancet 374(9699):1432–1440

    Article  PubMed  CAS  Google Scholar 

  • Curtin NJ, Harris AL, Aherne GW (1991) Mechanism of cell death following thymidylate synthase inhibition: 2′-deoxyuridine-5′-triphosphate accumulation, DNA damage, and growth inhibition following exposure to CB3717 and dipyridamole. Cancer Res 51(9):2346–2352

    PubMed  CAS  Google Scholar 

  • Dainty LA, Risinger JI, Morrison C et al (2007) Overexpression of folate binding protein and mesothelin are associated with uterine serous carcinoma. Gynecol Oncol 105(3):563–570

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Zhou X, Kugel Desmoulin S et al (2009) Synthesis and biological activity of a novel series of 6-substituted thieno[2, 3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J Med Chem 52(9):2940–2951

    Article  PubMed  CAS  Google Scholar 

  • Dixon KH, Mulligan T, Chung KN et al (1992) Effects of folate receptor expression following stable transfection into wild type and methotrexate transport-deficient ZR-75-1 human breast cancer cells. J Biol Chem 267(33):24140–24147

    PubMed  CAS  Google Scholar 

  • Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 56(8):1067–1084

    Article  PubMed  CAS  Google Scholar 

  • Ford HE, Mitchell F, Cunningham D et al (2002) Patterns of elevation of plasma 2′-deoxyuridine, a surrogate marker of thymidylate synthase (TS) inhibition, after administration of two different schedules of 5-fluorouracil and the specific TS inhibitors raltitrexed (Tomudex) and ZD9331. Clin Cancer Res 8(1):103–109

    PubMed  CAS  Google Scholar 

  • Forster M (2010) The preclinical development of BGC 945, a folate receptor targeted antifolate. PhD, University of London, London

    Google Scholar 

  • Forster M, Mitchell F, Valenti M et al (2005) Measurement of tumour and plasma dUrd levels indicate highly targeted inhibition of thymidylate synthase (TS) in α-folate receptor (α-FR) overexpressing tumour by the novel antifolate, BGC 945. Clin Cancer Res 11(24):9013s

    Google Scholar 

  • Forster MD, Ormerod MG, Agarwal R et al (2007) Flow cytometric method for determining folate receptor expression on ovarian carcinoma cells. Cytometry A 71(11):945–950

    PubMed  Google Scholar 

  • Franklin WA, Waintrub M, Edwards D et al (1994) New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma. Int J Cancer Suppl 8:89–95

    Article  PubMed  CAS  Google Scholar 

  • Garin-Chesa P, Campbell I, Saigo PE et al (1993) Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 142(2):557–567

    PubMed  CAS  Google Scholar 

  • Gibbs DD, Theti DS, Wood N et al (2005) BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res 65(24):11721–11728

    Article  PubMed  CAS  Google Scholar 

  • Goldman ID, Matherly LH (1985) The cellular pharmacology of methotrexate. Pharmacol Ther 28(1):77–102

    Article  PubMed  CAS  Google Scholar 

  • Goldman ID, Zhao R (2002) Molecular, biochemical, and cellular pharmacology of pemetrexed. Semin Oncol 29(6 Suppl 18):3–17

    PubMed  Google Scholar 

  • Hartmann LC, Keeney GL, Lingle WL et al (2007) Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 121(5):938–942

    Article  PubMed  CAS  Google Scholar 

  • Henderson GB, Tsuji JM, Kumar HP (1988) Mediated uptake of folate by a high-affinity binding protein in sublines of L1210 cells adapted to nanomolar concentrations of folate. J Membr Biol 101(3):247–258

    PubMed  CAS  Google Scholar 

  • Henderson EA, Bavetsias V, Theti DS et al (2006) Targeting the alpha-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase. Bioorg Med Chem 14(14):5020–5042

    Article  PubMed  CAS  Google Scholar 

  • Iwakiri S, Sonobe M, Nagai S et al (2008) Expression status of folate receptor alpha is significantly correlated with prognosis in non-small-cell lung cancers. Ann Surg Oncol 15(3):889–899

    Article  PubMed  Google Scholar 

  • Jackman AL, Calvert AH (1995) Folate-based thymidylate synthase inhibitors as anticancer drugs. Ann Oncol 6(9):871–881

    PubMed  CAS  Google Scholar 

  • Jackman AL, Taylor GA, Calvert AH et al (1984) Modulation of anti-metabolite effects. Effects of thymidine on the efficacy of the quinazoline-based thymidylate synthetase inhibitor, CB3717. Biochem Pharmacol 33(20):3269–3275

    Article  PubMed  CAS  Google Scholar 

  • Jackman AL, Jodrell DI, Gibson W et al (1991) ICI D1694, an inhibitor of thymidylate synthase for clinical study. Adv Exp Med Biol 309A:19–23

    PubMed  CAS  Google Scholar 

  • Jackman AL, Kimbell R, Brown M et al (1995) Quinazoline-based thymidylate synthase inhibitors: relationship between structural modifications and polyglutamation. Anticancer Drug Des 10(7):573–589

    PubMed  CAS  Google Scholar 

  • Jackman AL, Boyle FT, Harrap KR (1996) Tomudex (ZD1694): from concept to care, a programme in rational drug discovery. Invest New Drugs 14(3):305–316

    Article  PubMed  CAS  Google Scholar 

  • Jackman AL, Theti DS, Gibbs DD (2004) Antifolates targeted specifically to the folate receptor. Adv Drug Deliv Rev 56(8):1111–1125

    Article  PubMed  CAS  Google Scholar 

  • Jackman AL, Forster M, Ng M (2007) Targeting thymidylate synthase by antifolate drugs for the treatment of cancer. In: Neidle S (ed) Cancer drug design and discovery. Elsevier, New York, pp 198–226

    Google Scholar 

  • Jackson RC, Jackman AL, Calvert AH (1983) Biochemical effects of a quinazoline inhibitor of thymidylate synthetase, N-(4-(N-((2-amino-4-hydroxy-6-quinazolinyl)methyl)prop-2-ynylamino) benzoyl)-L-glutamic acid (CB3717), on human lymphoblastoid cells. Biochem Pharmacol 32(24):3783–3790

    Article  PubMed  CAS  Google Scholar 

  • Jansen G, Kathmann I, Rademaker BC et al (1989a) Expression of a folate binding protein in L1210 cells grown in low folate medium. Cancer Res 49(8):1959–1963

    PubMed  CAS  Google Scholar 

  • Jansen G, Westerhof GR, Kathmann I et al (1989b) Identification of a membrane-associated folate-binding protein in human leukemic CCRF-CEM cells with transport-related methotrexate resistance. Cancer Res 49(9):2455–2459, (correction in Cancer Res 1995;2455:4203; cell line now designated L1210-FBP)

    PubMed  CAS  Google Scholar 

  • Jansen G, Van der Heijden JW, Dijkmans BA (2009) Folate receptor-beta: a novel target for therapeutic intervention in rheumatoid arthritis? Int J Clin Rheumatol 4:109–113

    Article  Google Scholar 

  • Jones TR, Calvert AH, Jackman AL et al (1981) A potent antitumour quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties and therapeutic results in mice. Eur J Cancer 17(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Kalli KR, Oberg AL, Keeney GL et al (2008) Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol 108(3):619–626

    Article  PubMed  CAS  Google Scholar 

  • Leamon CP, Jackman AL (2008) Exploitation of the folate receptor in the management of cancer and inflammatory disease. Vitam Horm 79:203–233

    Article  PubMed  CAS  Google Scholar 

  • Leamon CP, Reddy JA, Dorton R et al (2008) Impact of high and low folate diets on tissue folate receptor levels and antitumor responses toward folate-drug conjugates. J Pharmacol Exp Ther 327(3):918–925

    Article  PubMed  CAS  Google Scholar 

  • Li KM, Rivory LP, Hoskins J et al (2007) Altered deoxyuridine and thymidine in plasma following capecitabine treatment in colorectal cancer patients. Br J Clin Pharmacol 63(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 13:256–262

    Article  PubMed  CAS  Google Scholar 

  • Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129

    Article  PubMed  CAS  Google Scholar 

  • Markert S, Lassmann S, Gabriel B et al (2008) Alpha-folate receptor expression in epithelial ovarian carcinoma and non-neoplastic ovarian tissue. Anticancer Res 28(6A):3567–3572

    PubMed  Google Scholar 

  • Matherly LH, Bove ND, Goldman ID (2011) Biological role, properties and therapeutic applications of the reduced folate carrier (RFC-SLC19A1) and the proton-coupled folate transporter (PCFT-SLC46A1). Targeted drug strategies for cancer and inflammation. Springer, New York.

    Google Scholar 

  • Matherly LH, Hou Z, Deng Y (2007) Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 26(1):111–128

    Article  PubMed  CAS  Google Scholar 

  • Mathias CJ, Wang S, Lee RJ et al (1996) Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 37(6):1003–1008

    PubMed  CAS  Google Scholar 

  • Mauritz R, Peters GJ, Kathmann I et al (2008) Dynamics of antifolate transport via the reduced folate carrier and the membrane folate receptor in murine leukaemia cells in vitro and in vivo. Cancer Chemother Pharmacol 62(6):937–948

    Article  PubMed  CAS  Google Scholar 

  • Mitchell F, Lynn S, Jackman AL (2000) Modified high-performance liquid chromatography assay for the measurement of 2′-deoxyuridine in human plasma and its application to pharmacodynamic studies of antimetabolite drugs. J Chromatogr B Biomed Sci Appl 744(2):351–358

    Article  PubMed  CAS  Google Scholar 

  • Nagayoshi R, Nakamura M, Ijiri K et al (2003) LY309887, antifolate via the folate receptor suppresses murine type II collagen-induced arthritis. Clin Exp Rheumatol 21(6):719–725

    PubMed  CAS  Google Scholar 

  • Nakashima-Matsushita N, Homma T, Yu S et al (1999) Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum 42(8):1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Ng C, Valenti M, Mitchell F et al (2008) Efficacy and tolerability of the thymidylate synthase (TS) inhibitor, BGC 945 is mediated through its selective uptake via the alpha-folate receptor alpha-FR in IGROV-1 human tumor xenografts. Proc Am Assoc Can Res, Abstract 3289

    Google Scholar 

  • Nutt JE, Razak AR, O’Toole K et al (2010) The role of folate receptor alpha (FRalpha) in the response of malignant pleural mesothelioma to pemetrexed-containing chemotherapy. Br J Cancer 102(3):553–560

    Article  PubMed  CAS  Google Scholar 

  • Parker N, Turk MJ, Westrick E et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  PubMed  CAS  Google Scholar 

  • Perumal M, Pillai RG, Barthel H et al (2006) Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Res 66(17):8558–8564

    Article  PubMed  CAS  Google Scholar 

  • Pillai RG, Forster M, Perumal M et al (2008) Imaging pharmacodynamics of the alpha-folate receptor-targeted thymidylate synthase inhibitor BGC 945. Cancer Res 68(10):3827–3834

    Article  PubMed  CAS  Google Scholar 

  • Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A et al (2009) Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 69(24):9395–9403

    Article  PubMed  Google Scholar 

  • Ross JF, Wang H, Behm FG et al (1999) Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer 85(2):348–357

    Article  PubMed  CAS  Google Scholar 

  • Saba NF, Wang X, Muller S et al (2009) Examining expression of folate receptor in squamous cell carcinoma of the head and neck as a target for a novel nanotherapeutic drug. Head Neck 31(4):475–481

    Article  PubMed  Google Scholar 

  • Salazar MD, Ratnam M (2007) The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev 26(1):141–152

    Article  PubMed  CAS  Google Scholar 

  • Scagliotti GV, Parikh P, von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26(21):3543–3551

    Article  PubMed  CAS  Google Scholar 

  • Schmitz JC, Grindey GB, Schultz RM et al (1994) Impact of dietary folic acid on reduced folates in mouse plasma and tissues. Relationship to dideazatetrahydrofolate sensitivity. Biochem Pharmacol 48(2):319–325

    Article  PubMed  CAS  Google Scholar 

  • Shen F, Ross JF, Wang X et al (1994) Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry 33(5):1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Shen F, Wu M, Ross JF et al (1995) Folate receptor type gamma is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: protein characterization and cell type specificity. Biochemistry 34(16):5660–5665

    Article  PubMed  CAS  Google Scholar 

  • Shia J, Klimstra DS, Nitzkorski JR et al (2008) Immunohistochemical expression of folate receptor alpha in colorectal carcinoma: patterns and biological significance. Hum Pathol 39(4):498–505

    Article  PubMed  CAS  Google Scholar 

  • Shih C, Chen VJ, Gossett LS et al (1997) LY231514, a pyrrolo[2, 3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 57(6):1116–1123

    PubMed  CAS  Google Scholar 

  • Smith AE, Pinkney M, Piggott NH et al (2007) A novel monoclonal antibody for detection of folate receptor alpha in paraffin-embedded tissues. Hybridoma (Larchmt) 26(5):281–288

    Article  CAS  Google Scholar 

  • Theti DS (2002) Development of a novel class of thymidylate synthase inhibitors targeted to α-folate receptor overexpressing tumours. PhD, University of London, London

    Google Scholar 

  • Theti DS, Jackman AL (2004) The role of alpha-folate receptor-mediated transport in the antitumor activity of antifolate drugs. Clin Cancer Res 10(3):1080–1089

    Article  PubMed  CAS  Google Scholar 

  • Theti DS, Bavetsias V, Skelton LA et al (2003) Selective delivery of CB300638, a cyclopenta[g]quinazoline-based thymidylate synthase inhibitor into human tumor cell lines overexpressing the alpha-isoform of the folate receptor. Cancer Res 63(13):3612–3618

    PubMed  CAS  Google Scholar 

  • van der Heijden JW, Oerlemans R, Dijkmans BA et al (2009) Folate receptor beta as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum 60(1):12–21

    Article  PubMed  Google Scholar 

  • Walling J (2006) From methotrexate to pemetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Invest New Drugs 24(1):37–77

    Article  PubMed  Google Scholar 

  • Wang X, Shen F, Freisheim JH et al (1992) Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochem Pharmacol 44(9):1898–1901

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Cherian C, Desmoulin SK et al (2010) Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2, 3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry. J Med Chem 53(3):1306–1318

    Article  PubMed  CAS  Google Scholar 

  • Webley SD, Hardcastle A, Ladner RD et al (2000) Deoxyuridine triphosphatase (dUTPase) expression and sensitivity to the thymidylate synthase (TS) inhibitor ZD9331. Br J Cancer 83(6):792–799

    Article  PubMed  CAS  Google Scholar 

  • Webley SD, Welsh SJ, Jackman AL et al (2001) The ability to accumulate deoxyuridine triphosphate and cellular response to thymidylate synthase (TS) inhibition. Br J Cancer 85(3):446–452

    Article  PubMed  CAS  Google Scholar 

  • Weitman SD, Lark RH, Coney LR et al (1992a) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401

    PubMed  CAS  Google Scholar 

  • Weitman SD, Weinberg AG, Coney LR et al (1992b) Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 52(23):6708–6711

    PubMed  CAS  Google Scholar 

  • Westerhof GR, Jansen G, van Emmerik N et al (1991) Membrane transport of natural folates and antifolate compounds in murine L1210 leukemia cells: role of carrier- and receptor-mediated transport systems. Cancer Res 51(20):5507–5513

    PubMed  CAS  Google Scholar 

  • Westerhof GR, Rijnboutt S, Schornagel JH et al (1995a) Functional activity of the reduced folate carrier in KB, MA104, and IGROV-I cells expressing folate-binding protein. Cancer Res 55(17):3795–3802

    PubMed  CAS  Google Scholar 

  • Westerhof GR, Schornagel JH, Kathmann I et al (1995b) Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular-structure and biological activity. Mol Pharmacol 48(3):459–471

    PubMed  CAS  Google Scholar 

  • Zimmerman J (1990) Folic acid transport in organ-cultured mucosa of human intestine. Evidence for distinct carriers. Gastroenterology 99(4):964–972

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann L. Jackman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jackman, A.L., Jansen, G., Ng, M. (2011). Folate Receptor Targeted Thymidylate Synthase Inhibitors. In: Jackman, A., Leamon, C. (eds) Targeted Drug Strategies for Cancer and Inflammation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8417-3_5

Download citation

Publish with us

Policies and ethics