Cathepsins B1 and B2 of Trichobilharzia SPP., Bird Schistosomes Causing Cercarial Dermatitis

  • Martin Kašný
  • Libor Mikeš
  • Kateřina Dolečková
  • Vladimír Hampl
  • Jan Dvořák
  • Marian Novotný
  • Petr Horák
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 712)


Trichobilharzia regenti and T. szidati are schistosomes that infect birds. although T. regenti/T. szidati can only complete their life cycle in specific bird hosts (waterfowl), their larvae—cercariae are able to penetrate, transform and then migrate as schistosomula in nonspecific hosts (e.g., mouse, man). Peptidases are among the key molecules produced by these schistosomes that enable parasite invasion and survival within the host and include cysteine peptidases such as cathepsins B1 and B2. These enzymes are indispensable bio-catalysts in a number of basal biological processes and host-parasite interactions, e.g., tissue invasion/migration, nutrition and immune evasion. Similar biochemical and functional characteristics were observed for cathepsins B1 and B2 in bird schistosomes (T. regenti, T. szidati) and also for their homologs in human schistosomes (Schistosoma mansoni, S. japonicum). Therefore, data obtained in the research of bird schistosomes can also be exploited for the control of human schistosomes such as the search for targets of novel chemotherapeutic drugs and vaccines.


Cysteine Peptidase Schistosoma Mansoni Schistosoma Japonicum Active Site Cleft Cysteine Peptidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dubois JP, Buet A, Cusin I et al. Epidemiological studies related to cercarial dermatitis in lakes of the Savoy District (France). Helminthologia 2001; 38:244.Google Scholar
  2. 2.
    Thors C, Linder E. Swimmer’s itch in Sweden. Helminthologia 2001; 38:244.Google Scholar
  3. 3.
    Mas-Coma S, Valero MA, Bargues MD. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet Parasitol 2009; 163:264–280.PubMedCrossRefGoogle Scholar
  4. 4.
    Larsen AH, Bresciani J, Buchmann K. Increasing frequency of cercarial dermatitis in higher latitudes. Acta Parasitol 2004; 49:217–221.Google Scholar
  5. 5.
    Skírnisson K, Aldhoun JA, Kolářová L. A review on swimmers itch and the occurrence of bird schistosomes in Iceland. J Helminthol 2009; 83:165–171.PubMedCrossRefGoogle Scholar
  6. 6.
    Davis NE. A survey of waterfowl for echinostomes and schistosomes from lake Wanaka and the Waitaki River watershed. N Z J Helminthol 2006; 80:33–40.CrossRefGoogle Scholar
  7. 7.
    Brant SV, Loker ES. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North america. J Parasitol 2009; 95:941–963.PubMedCrossRefGoogle Scholar
  8. 8.
    Horák P, Kolářová L, Adema C. Biology of the schistosome genus Trichobilharzia. Adv Parasitol 2002; 52:155–233.PubMedCrossRefGoogle Scholar
  9. 9.
    Horák P, Dvořák J, Kolářová L et al. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous system. Parasitology 1999; 119:577–581.PubMedCrossRefGoogle Scholar
  10. 10.
    Horák P, Mikeš L, Rudolfová J et al. Penetration of Trichobilharzia cercariae into mammals: dangerous or negligible event? Parasite 2008; 15:299–303.PubMedGoogle Scholar
  11. 11.
    De Jong-Brink M, Bergamin-Sassen M, Solis SM. Multiple strategies of schistosomes to meet their requirements in the intermediate host. Parasitology 2002; 123:S129–S141.Google Scholar
  12. 12.
    Haas W. Parasitic worms: strategies of host finding, recognition and invasion. Zoology 2003; 34:927–934.Google Scholar
  13. 13.
    Hertel J, Holweg A, Haberl B et al. Snail odour-clouds: spreading and contribution to the transmission success of trichobilharzia ocellata (Trematod A, Digenea) miracidia. Oecologia 2006; 147:173–180.PubMedCrossRefGoogle Scholar
  14. 14.
    Dvořák J, Delcroix M, Rossi A et al. Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterization and putative role in migration and nutrition. Int J Parasitol 2005; 35:895–910.PubMedCrossRefGoogle Scholar
  15. 15.
    Mikeš L, Zídková L, Kašný M et al. In vitro stimulation of penetration gland emptying by Trichobilharzia szidati and t. regenti (Schistosomatidae) cercariae. Quantitative collection and partial characterization of the products. Parasitol Res 2005; 96:230–241.PubMedCrossRefGoogle Scholar
  16. 16.
    Kašný M, Mikeš L, Dalton JP et al. Comparison of cysteine peptidase activities in Trichobilharzia regenti and Schistosoma mansoni cercariae. Parasitology 2007; 134:1599–1609.PubMedGoogle Scholar
  17. 17.
    Dolečková K, Kašný M, Mikeš L et al. The functional expression and characterization of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol 2009; 39:201–211.PubMedCrossRefGoogle Scholar
  18. 18.
    Kašný M, Mikeš L, Hampl V et al. Peptidases of trematodes. Adv Parasitol 2009; 69:205–297.PubMedCrossRefGoogle Scholar
  19. 19.
    Bahgat M and Ruppel A. Biochemical comparison of the serine protease (elastase) activities in cercarial secretions from Trichobilharzia ocellata and Schistosoma mansoni. Parasitol Res 2002; 88:495–500.PubMedCrossRefGoogle Scholar
  20. 20.
    Dalton JP, Clough KA, Jones MK et al. Characterization of the cathepsin-like cysteine proteinases of Schistosoma mansoni. Infect Immun 1996; 64:1328–1334.PubMedGoogle Scholar
  21. 21.
    Dalton JP, Clough KA, Jones MK et al. The cysteine proteinases of Schistosoma mansoni cercariae. Parasitology 1997; 114;105–112.PubMedCrossRefGoogle Scholar
  22. 22.
    Dvořák J, Mashiyama ST, Braschi S et al. Differential use of protease families for invasion by schistosome cercariae. Biochimie 2008; 90:345–348.PubMedCrossRefGoogle Scholar
  23. 23.
    Kouřilová P, Hogg KG, Kolářová L et al. Cercarial dermatitis caused by bird schistosomes comprises both immediate and late phase cutaneous hypersensitivity reactions. J Immunol 2004; 172:3766–3774.PubMedGoogle Scholar
  24. 24.
    Lichtenbergová L, Kolbeková P, Kouřilová P et al. Antibody responses induced by Trichobilharzia regenti antigens in murine and human hosts exhibiting cercarial dermatitis. Parasite Immunol 2008; 30:585–595.PubMedGoogle Scholar
  25. 25.
    Dolečková K, Kašný M, Mikeš L et al. Peptidases of Trichobilharzia regenti (Schistosomatidae) and its molluscan host Radix peregra s. lat. (Lymnaeidae): construction and screening of cDNa library from intramolluscan stages of the parasite. Folia Parasitol 2007; 54:94–98.PubMedGoogle Scholar
  26. 26.
    Rawlings ND, Morton FR, Kok CY et al. MEROPS: the peptidase database. Nucleic Acids Res 2008; 36:320–325.CrossRefGoogle Scholar
  27. 27.
    Sajid M., McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 2002; 120:1–21.PubMedCrossRefGoogle Scholar
  28. 28.
    McKerrow JH, Caffrey C, Kelly B et al. Proteases in Parasitic Diseases Annu Rev Pathog Mech Dis 2006; 1:497–536.CrossRefGoogle Scholar
  29. 29.
    Caffrey CR, Rheinberg CE, Moné H et al. Schistosoma japonicum, S mansoni, S haematobium, S intercalatum and S rodhaini: cysteine-class cathepsin activities in the vomitus of adult worms. Parasitol Res 1997; 83:37–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Caffrey CR, Ruppel A. Affinity isolation and characterization of the cathepsin B-like proteinase Sj31 from Schistosoma japonicum. The J Parasitol 1997a; 82:1112–1118.CrossRefGoogle Scholar
  31. 31.
    Caffrey CR, Ruppel A. Cathepsin B-like activity predominates over cathepsin l-like activity in adult Schistosoma mansoni and S. japonicum. Parasitol Res 1997b; 83:632–635.PubMedCrossRefGoogle Scholar
  32. 32.
    Sajid M, McKerrow JH, Hansell E et al. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol Biochem Parasitol 2003; 131:65–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Caffrey CR, McKerrow JH, Salter JP et al. Blood ‘n’ guts: an update on schistosome digestive peptidases. Trends Parasitol 2004; 20:241–248.PubMedCrossRefGoogle Scholar
  34. 34.
    Delcroix M, Sajid M, Caffrey CR et al. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 2006; 282:39316–39329.CrossRefGoogle Scholar
  35. 35.
    Delcroix M, Medzihradsky K, Caffrey CR et al. Proteomic analysis of adult S. mansoni gut contents. Mol Biochem Parasitol 2007; 154:95–97.PubMedCrossRefGoogle Scholar
  36. 36.
    Dolečková K, Albrecht T, Mikeš L et al. Cathepsins B1 and B2 in the neuropathogenic schistosome Trichobilharzia regenti: distinct expression and presumptive role throughout the life cycle. Parasitol Res 2010; 107:751–755.PubMedCrossRefGoogle Scholar
  37. 37.
    Jacobsen W, Cristians U, Benet L. In vitro evaluation of the disposition of a novel cysteine protease inhibitor. Drug Metab Dispos 2000; 28:1343–1351.PubMedGoogle Scholar
  38. 38.
    Xiao SH. Development of antischistosomal drugs in china, with particular consideration to praziquantel and the artemisinins. Acta Trop 2005; 96:153–167.PubMedCrossRefGoogle Scholar
  39. 39.
    Renslo AR, McKerrow JH. Drug discovery and development for neglected parasitic diseases. Nat Chem Biol 2006; 12:701–710.CrossRefGoogle Scholar
  40. 40.
    Abdulla MH, Lim KCH, Sajid M et al. Schistosomiasis mansoni: Novel chemotherapy using a cysteine protease inhibitor. PloS Med 2007; 4:130–138.CrossRefGoogle Scholar
  41. 41.
    Musil D, Zucic D, Turk D et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 1991; 10:2321–2330.PubMedGoogle Scholar
  42. 42.
    Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 2000; 147:98–111.CrossRefGoogle Scholar
  43. 43.
    Caffrey CR, Salter JP, Lucas KD et al. SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Mol Biochem Parasitol 2002; 121:49–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Lecaille F, Kaleta J, Bröme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002; 102:4459–4488.PubMedCrossRefGoogle Scholar
  45. 45.
    Rawlings ND, Barrett AJ. Introduction: the clans and families of cysteine peptidases. In Handbook of Proteolytic Enzymes, 2 edn (Barrett, A.J., Rawlings, N.D. and Woessner, J.F. eds), Elsevier, Amsterdam 2004, 1051–1071.Google Scholar
  46. 46.
    Merckelbach A, Hasse S, Dell R et al. cDNA sequences of Schistosoma japonicum coding for two cathepsin B-like proteins and Sj32. Ann Trop Med Parasitol 1994; 45:193–198.Google Scholar
  47. 47.
    Caffrey CR, Mathieu MA, Gaffney AM et al. Identification of a cDNA encoding an active asparaginyl endopeptidase of Schistosoma mansoni and its expression in Pichiapastoris. FEBS Lett 2000; 466:244–248.PubMedCrossRefGoogle Scholar
  48. 48.
    Berriman M, Haas BJ, LoVerde PT et al. The genome of the blood fluke Schistosoma mansoni. Nature 2009; 460:352–358.PubMedCrossRefGoogle Scholar
  49. 49.
    Pils B, Schultz J. 2004. Inactive enzyme-homologues find new function in regulatory processes. Mol Biochem Parasitol 2004; 340:399–404.Google Scholar
  50. 50.
    Atkinson HJ, Babbitt PC, Sajid M. The global cysteine peptidase landscape in parasites.Trends Parasitol 2009; 12:573–581.CrossRefGoogle Scholar
  51. 51.
    Law RH, Smooker PM, Irving JA et al. Cloning and expression of the major secreted cathepsin B-like protein from juvenile Fasciola hepatica and analysis of immunogenicity following liver fluke infection. Infect Immun 2003; 71:6921–6932.PubMedCrossRefGoogle Scholar
  52. 52.
    Meemon K, Grams R, Vichasri GS et al. Molecular cloning and analysis of stage and tissue-specific expression of cathepsin B encoding genes from Fasciola gigantica. Mol Biochem Parasitol 2004; 136;1–10.PubMedCrossRefGoogle Scholar
  53. 53.
    Beckham S, Law RHP, Smooker PM et al. Production and processing of a recombinant Fasciola hepatica cathepsin B-like enzyme (FhcatB1) reveals potential processing mechanisms in the parasite. Biol Chem 2006; 387:1053–1061.PubMedCrossRefGoogle Scholar
  54. 54.
    Illy Ch, Quraishi O, Wang J et al. Role of the occluding loop in cathepsin B activity. J Biol Chem 1997; 10:1197–1202.Google Scholar
  55. 55.
    Krupa JC, Hasnain S, Nägler DK et al. S2′substrate specificity and the role of His110 and his111 in activity of human cathepsin B. Biochem J 2002; 361:613–619.PubMedCrossRefGoogle Scholar
  56. 56.
    Nägler DK, Storer AC, Portaro FC et al. Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Biochemistry 1997; 41:12608–12615.CrossRefGoogle Scholar
  57. 57.
    Quraishi O, Nägler DK, Fox T et al. The occluding loop in cathepsin B defines the pH dependence of inhibition by its propeptide. Biochemistry 1999; 38:5017–5023.PubMedCrossRefGoogle Scholar
  58. 58.
    Berti PJ, Storer AC. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 1995; 246:273–283.PubMedCrossRefGoogle Scholar
  59. 59.
    Jolly ER, Chin ChS, Miller S et al. Gene expression patterns during adaptation of a helminth parasite to different environmental niches. Genome Biol 2007; 8:R65.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu F, Lu J, Hu W et al. New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PloS Pathog 2006; 2:268–281.CrossRefGoogle Scholar
  61. 61.
    Choe Y, Leonetti F, Greenbaum DC et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 2006; 281:12824–12832.PubMedCrossRefGoogle Scholar
  62. 62.
    Greenbaum D, Medzihradszky KF, Burlingame A et al. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 2000; 7:569–581.PubMedCrossRefGoogle Scholar
  63. 63.
    Dvořák J, Mashiyama ST, Braschi S et al. Differential use of protease families for invasion by schistosome cercariae. Biochimie 2008; 90:345–348.PubMedCrossRefGoogle Scholar
  64. 64.
    Spiess E, Brüning A, Gack S et al. Cathepsin B activity in human lung tumor Cell lines: ultrastructural localization, ph sensitivity and inhibitor status at the cellular level. The J Histochem Cytochem 1994; 42:917–929.CrossRefGoogle Scholar
  65. 65.
    Khersonsky O, Roodveldt C, Tawfik DS. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 2006; 10:498–508.PubMedCrossRefGoogle Scholar
  66. 66.
    Rudolfová J, Hampl V, Bayssade-Dufour C et al. Validity reassessment of Trichobilharzia species using Lymnaea stagnalis as the intermediate host. Parasitol Res 2005; 95:79–89.PubMedCrossRefGoogle Scholar
  67. 67.
    Salter JP, Lim KC, Hansell E et al. Schistosome invasion of human skin and degradation of dermal elastin are mediated by a single serine protease. J Biol Chem 2000; 275:38667–38673.PubMedCrossRefGoogle Scholar
  68. 68.
    Salter JP, Choe Y, Albrecht H et al. Cercarial elastase is encoded by a functionally conserved gene family across multiple species of schistosomes J Biol Chem 2002; 277:24618–24624.PubMedCrossRefGoogle Scholar
  69. 69.
    Baig S, Damian RT, Peterson DS. A novel cathepsin B active site motif is shared by helminth bloodfeeders Exp Parasitol 2002; 101:83–89.PubMedCrossRefGoogle Scholar
  70. 70.
    Chanová M, Horák P. Terminal phase of bird schistosomiasis caused by Trichobilharzia regenti (Schistosomatidae) in ducks (anas platyrhynchos f. domestica). Folia Parasitol 2007; 54:105–107.PubMedGoogle Scholar
  71. 71.
    Sojka D, Hajdušek O, Dvořák J et al. IrAE—An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int J Parasitol 2007; 37:713–724.PubMedCrossRefGoogle Scholar
  72. 72.
    Krautz-Peterson G, Skelly PJ. Schistosome asparaginyl endopeptidase (legumain) is not essential for cathepsin B1 activation in vivo. Mol Biochem Parasitol 2008; 159:54–58.PubMedCrossRefGoogle Scholar
  73. 73.
    Dalton JP, Brindley PJ, Donnelly S et al. The enigmatic asparaginyl endopeptidase of helminth parasites. Trends Parasitol 2009; 25:59–61.PubMedCrossRefGoogle Scholar
  74. 74.
    Mathieu MA, Bogyo M, Caffrey CR et al. Substrate specificity of schistosome versus human legumain determined by P1-P3 peptide libraries. Mol Biochem Parasitol 2002; 121:99–105.PubMedCrossRefGoogle Scholar
  75. 75.
    Wulff C, Haeberlein S, Haas W. Cream formulations protecting against cercarial dermatitis by Trichobilharzia, Parasitol Res 2007; 101:98–111.CrossRefGoogle Scholar
  76. 76.
    Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2005; 22:2688–2690.CrossRefGoogle Scholar
  77. 77.
    Benson DA, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res 2009; 37:D26–D31.PubMedCrossRefGoogle Scholar
  78. 78.
    Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 246:273–283.Google Scholar
  79. 79.
    Podobnik M, Kuhelj R, Turk V et al. Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. J Mol Biol 1993; 271:774–788.CrossRefGoogle Scholar
  80. 80.
    Stern I, Schaschke N, Moroder L et al. Crystal structure of NS-134 in complex with bovine cathepsin B: a two-headed epoxysuccinyl inhibitor extends along the elntire active-site cleft. Biochem J 2004; 381:511–517.PubMedCrossRefGoogle Scholar
  81. 81.
    Schneidman-Duhovny D, Inbar Y, Nussinov R et al. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005; 3:363–367.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin Kašný
    • 1
  • Libor Mikeš
    • 1
  • Kateřina Dolečková
    • 1
  • Vladimír Hampl
    • 1
  • Jan Dvořák
    • 2
  • Marian Novotný
    • 3
  • Petr Horák
    • 1
  1. 1.Department of Parasitology, Faculty of ScienceCharles University in PragueCzech Republic
  2. 2.Institute of ParasitologyBiology Centre of the Academy of Sciences of the Czech RepublicBudějoviceCzech Republic
  3. 3.Department of Cell Biology, Faculty of ScienceCharles University in PraguePragueCzech Republic

Personalised recommendations