The Phylogeny, Structure and Function of Trematode Cysteine Proteases, with Particular Emphasis on the Fasciola hepatica Cathepsin L Family

  • Colin Stack
  • John P. Dalton
  • Mark W. Robinson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 712)


Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world’s population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.


Cysteine Protease Schistosoma Mansoni Schistosoma Japonicum Human Cathepsin Asparaginyl Endopeptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hotez PJ, Molyneux DH, Stillwaggon E et al. Neglected tropical diseases and HIV/AIDS. Lancet 2006; 368:1865–1866.PubMedCrossRefGoogle Scholar
  2. 2.
    Robinson M, Dalton JP. Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodes. Philos Trans R Soc B Biol Sci 2009; 364:2763–2776.CrossRefGoogle Scholar
  3. 3.
    Engels D, Chitsulo L, Montresor A et al. The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Trop 2002; 82:139–146.PubMedCrossRefGoogle Scholar
  4. 4.
    Gryseels B, Polman K, Clerinx J et al. Human schistosomiasis. Lancet 2006; 368:1106–1118.PubMedCrossRefGoogle Scholar
  5. 5.
    Keiser J, Utzinger J. Emerging foodborne trematodiasis. Emerg Infect Dis 2005; 11:1507–1514.PubMedGoogle Scholar
  6. 6.
    Lun ZR, Gasser RB, Lai DH et al. Clonorchiasis: a key foodborne zoonosis in China. Lancet. Infect Dis 2005; 5:31–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Mas-Coma S, Bargues MD, Valero MA. Fascioliasis and other plant-borne trematode zoonoses. Int J Parasitol 2005; 35:1255–1278.PubMedCrossRefGoogle Scholar
  8. 8.
    Parkinson M, O’Neill SM, Dalton JP. Endemic human fasciolosis in the Bolivian Altiplano. Epidemiol Infect 2007; 135:669–674.PubMedCrossRefGoogle Scholar
  9. 9.
    Littlewood DTJ. The evolution of parasitismin flat worms. In: Maule A.G. and Marks N.J., eds. Parasitic Flatworms: Molecular Biology, Biochemistry, Immunology and Physiology, Oxford: CAB International, 2006:1–36.Google Scholar
  10. 10.
    Caffrey CR, McKerrow JH, Salter JP et al. Blood ‘n’ guts: an update on schistosome digestive peptidases. Trends Parasitol 2004; 20:241–248.PubMedCrossRefGoogle Scholar
  11. 11.
    Kašný M, Mikes L, Hampl V et al. Chapter 4. Peptidases of trematodes. Adv Parasitol 2009; 69:205–297.PubMedCrossRefGoogle Scholar
  12. 12.
    Tort J, Brindley PJ, Knox D et al (1999). Proteinases and associated genes of parasitic helminths. Adv Parasitol 1999; 43:161–266.PubMedCrossRefGoogle Scholar
  13. 13.
    Dalton JP, Caffrey CR, Sajid M et al. Proteases in trematode biology. In: Maule A.G. and Marks N.J., eds. Parasitic Flatworms: Molecular Biology, Biochemistry, Immunology and Physiology, Oxford: CAB International, 2006.Google Scholar
  14. 14.
    Cho PY, Lee MJ, Kim TI et al (2006). Expressed sequence tag analysis of adult clonorchis sinensis, the Chinese liver fluke. Parasitol Res 2006; 99:602–608.PubMedCrossRefGoogle Scholar
  15. 15.
    Cho PY, Kim TI, Whang SM et al. Gene expression profile of Clonorchis sinensis metacercariae. Parasitol Res 2008; 102:277–282.PubMedCrossRefGoogle Scholar
  16. 16.
    Kim TS, de Guzman JV, Kong HH et al. Comparison of gene representation between diploid and triploid Paragonimus westermani by expressed sequence tag analyses. J Parasitol 2006; 92:803–816.PubMedCrossRefGoogle Scholar
  17. 17.
    Robinson MW, Tort JF, Lowther J et al. Proteomic and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen, Fasciola hepatica: expansion of a repertoire of virulence-associated factors. Mol Cell Proteomics 2008; 7:1111–1123.PubMedCrossRefGoogle Scholar
  18. 18.
    Curwen RS, Ashton PD, Sundaralingham S et al. Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Mol Cell Proteomics 2006; 5:835–844.PubMedCrossRefGoogle Scholar
  19. 19.
    Donnelly SM, Dalton JP, Robinson MW. How pathogen-derived cysteine proteases modulate host immune responses. In Robinson MW, Dalton JP, eds. Cysteine Proteases of Pathogenic Organisms. Austin: Landes Bioscience, 2011.Google Scholar
  20. 20.
    Park H, Hong, KM, Sakanari JA et al. Paragonimus westermani: cloning of a cathepsin F-like cysteine proteinase from the adult worm. Exp Parasitol 2001; 98:223–227.PubMedCrossRefGoogle Scholar
  21. 21.
    NA BK, Kang JM, Sohn WM. CsCF-6, a novel cathepsin F-like cysteine protease for nutrient uptake of Clonorchis sinensis. Int J Parasitol 2008; 38:493–502.PubMedCrossRefGoogle Scholar
  22. 22.
    Pinlaor P, Kaewpitoon N, Laha T et al. Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini. PLoS Negl Trop Dis 2009; 3:e398.PubMedCrossRefGoogle Scholar
  23. 23.
    Robinson MW, Dalton JP, Donnelly S. Helminth pathogen cathepsin proteases: it’s a family affair. Trends Biochem Sci 2008; 33:601–608.PubMedCrossRefGoogle Scholar
  24. 24.
    Lynch M. (2002) Gene duplication and evolution. Science 2009; 297:945–947.CrossRefGoogle Scholar
  25. 25.
    Irving JA, Spithill TW, Pike RN et al. The evolution of enzyme specificity in Fasciola spp. J Mol Evol 2003; 57:1–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Kang JM, Bahk YY, Cho PY et al. A family of cathepsin F cysteine proteases of Clonorchis sinensis is the major secreted proteins that are expressed in the intestine of the parasite. Mol Biochem Parasitol 2010; 170:7–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Morphew RM, Wright HA, LaCourse EJ et al. Comparative proteomics of excretory-secretory proteins released by the liver fluke Fasciola hepatica in sheep host bile and during in vitro culture ex host. Mol Cell Proteomics 2007; 6:963–972.PubMedCrossRefGoogle Scholar
  28. 28.
    Smooker PM, Whisstock JC, Irving JA et al. A single amino acid substitution affects substrate specificity in cysteine proteinases from Fasciola hepatica. Protein Sci 2000; 9:2567–2572.PubMedCrossRefGoogle Scholar
  29. 29.
    Stack CM, Caffrey CR, Donnelly SM et al. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J Biol Chem 2008; 283:9896–9908.PubMedCrossRefGoogle Scholar
  30. 30.
    Corvo I, Cancela M, Cappetta M et al. The major cathepsin L secreted by the invasive juvenile Fasciola hepatica prefers proline in the S2 subsite and can cleave collagen. Mol Biochem Parasitol 2009; 167:41–47.PubMedCrossRefGoogle Scholar
  31. 31.
    McGonigle L, Mousley A, Marks NJ et al. The silencing of cysteine proteases in Fasciola hepatica newly excysted juveniles using RNA interference reduces gut penetration. Int J Parasitol 2008; 38:149–155.PubMedCrossRefGoogle Scholar
  32. 32.
    Turk D, Guncar G. Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta crystallogr D Biol Crystallogr 2003; 59:203–213.PubMedCrossRefGoogle Scholar
  33. 33.
    Turk D, Guncar G, Podobnik M et al. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem 1998; 379:137–147.PubMedCrossRefGoogle Scholar
  34. 34.
    Lecaille F, Broome D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie 2008; 90:208–226.PubMedCrossRefGoogle Scholar
  35. 35.
    Lecaille F, Choe Y, Brandt W et al. Selective inhibition of the collagenolytic activity of human cathepsin K by altering its subsite specificity. Biochemistry 2002; 41:8447–8454.PubMedCrossRefGoogle Scholar
  36. 36.
    Lowther J, Robinson MW, Donnelly SM et al. The importance of pH in regulating the function of Fasciola hepatica cathepsin L1 cysteine protease. PloS Negl Trop Dis 2009; 3:e369.PubMedCrossRefGoogle Scholar
  37. 37.
    Coulombe R, Grochulski P, Sivaraman J et al. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J 1996; 15:5492–5503.PubMedGoogle Scholar
  38. 38.
    Wiederanders B, Kaulmann G, Shilling K. Functions of propeptide parts in cysteine proteases. Curr Protein Pept Sci 2003; 4:309–326.PubMedCrossRefGoogle Scholar
  39. 39.
    Baker D, Silen JL, Agard DA. Protease pro region required for folding is a potent inhibitor of the mature enzyme. Proteins 1992; 12:339–344.PubMedCrossRefGoogle Scholar
  40. 40.
    Shinde UP, Liu JJ, Inouye M. Protein memory through altered folding mediated by intramolecular chaperones. Nature 1997; 389:520–522.PubMedCrossRefGoogle Scholar
  41. 41.
    Menard R, Carmona E, Takebe S et al. Autocatalytic processing of recombinant human procathepsin l. contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J Bio Chem 1998; 273:4478–4484.CrossRefGoogle Scholar
  42. 42.
    Vernet T, Berti, PJ, de Montigny C et al. Processing of the papain precursor. The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing. J Biol Chem 1995; 270:10838–10846.PubMedCrossRefGoogle Scholar
  43. 43.
    Collins PR, Stack CM, O’Neill SM et al. Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: propeptide cleavage sites and autoactivation of the zymogen secreted from gastrodrmal cells. J Biol Chem 2004; 279:17038–17046.PubMedCrossRefGoogle Scholar
  44. 44.
    Stack CM, Donnelly SM, Lowther J et al. The major secreted cathepsin L1 protease of the liver fluke, Fasciola hepatica: a Leu-12 to Pro-12 replacement in the nonconserved C-terminal region of the prosegment prevents complete enzyme autoactivation and allows definition of the molecular events in prosegment removal. J Biol Chem 2007; 282:16532–16543.PubMedCrossRefGoogle Scholar
  45. 45.
    Rozman J, Stojan J, Kuhelj R et al. Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Lett 1999; 459:358–362.PubMedCrossRefGoogle Scholar
  46. 46.
    Jerala R, Zerovnik E, Kidric J et al. pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation. J Bio Chem 1998; 273:11498–11504.CrossRefGoogle Scholar
  47. 47.
    Dalton JP, Brindley PJ. Schistosome asparginyl endopeptidase SM32 in haemoglobin digestion. Parsitol Today 1996; 12:125.CrossRefGoogle Scholar
  48. 48.
    Robinson MW, Menon R, Donnelly SM et al. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics 2009; 8:1891–1907.PubMedCrossRefGoogle Scholar
  49. 49.
    Tkalcevic J, Ashman K, Meeusen E. Fasciola hepatica: rapid identification of newly excysted juvenile proteins. Biochem Biophys Res Commun 1995; 213:169–174.PubMedCrossRefGoogle Scholar
  50. 50.
    Adiskwattana P, Viyanant V, Chaicumpa W et al. Comparative molecular analysis of two asparaginyl endopeptidases and encoding genes from Fasciola gigantica. Mol Biochem Parasitol 2007; 156:102–116.CrossRefGoogle Scholar
  51. 51.
    Laha T, Sripa J, Sipra B et al. Asparaginyl endopeptidase from the carcinogenic liver fluke, Opisthorchis viverrini and its potential for serodiagnosis. Int J Infect Dis 2008; 12:e49–59.PubMedCrossRefGoogle Scholar
  52. 52.
    Ju JW, Joo HN, Lee MR et al. Identification of a serodiagnostic antigen, legumain, by immunoproteomic analysis of excretory-secretory products by clonorchis sinensis adult worms. Proteomics 2009;9:3066–3078.PubMedCrossRefGoogle Scholar
  53. 53.
    Sajid M, Mckerrow JH, Hansell E et al. Functional expression and characterisation of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparginyl endopeptidase. Mol Biochem Parasitol 2003; 131:65–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Krautz-Peterson G, Skelly PJ. Schistosome asparaginyl endopeptidase (legumain) is not essential for cathepsin B1 autoactivation in vivo. Mol Biochem Parasitol 2008; 159:54–58.PubMedCrossRefGoogle Scholar
  55. 55.
    Delcroix M, Sajid M, Caffrey CR et al. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 2006; 281:39316–39329.PubMedCrossRefGoogle Scholar
  56. 56.
    Sripa J, Laha T, To J et al. Secreted cysteine proteases of the carcinogenic liver fluke, Opisthorchis viverrini: regulation of cathepsin f activation by autocatalysis and trans-processing by cathepsin B. Cell Microbiol 2010; 12:781–795.PubMedCrossRefGoogle Scholar
  57. 57.
    Dalton JP, Clough KA, Jones MK et al. The cysteine proteases of Schistosoma mansoni cercariae. Parasitology 1997; 114:105–112.PubMedCrossRefGoogle Scholar
  58. 58.
    Kašný, M, Mikes L, Dalton JP et al. Comparison of cysteine protidase activities in Tricjobilharzia regenti and Schistosoma mansoni cercariae. Parasitology 2007; 134:1599–1609.PubMedGoogle Scholar
  59. 59.
    Wasilewski MM, Lim KC, Philips J et al. Cysteine protease inhibitors block schistosome hemoglobin degradation in vitro and decrease worm burden and egg production in vivo. Mol Biochem Parasitol 1996; 81:179–189.PubMedCrossRefGoogle Scholar
  60. 60.
    Bogitsh BJ, Kirschner KF, Rotmans JP. Schistosoma japonicum: immunoinhibitory studies on hemoglobin digestion using heterologous antiserum to bovine cathepsin D. J Parasitol 1992; 78:454–459.PubMedCrossRefGoogle Scholar
  61. 61.
    Dalton JP, Neill SO, Stack C et al. Fasciola hepatica cathepsin L-like proteases: biology, function and potential in the development of first generation liver fluke vaccines. Int J Parasitol 2003; 33:1173–1181.PubMedCrossRefGoogle Scholar
  62. 62.
    McManus DP, Dalton JP. Vaccines against the zoonotic trematodes Schistosoma japonicum, Fasciola hepatica and Fasciola gigantica. Parasitology 2006; 133:S43–S61.PubMedCrossRefGoogle Scholar
  63. 63.
    Brindley PJ, Pearce EJ. Genetic manipulation of schistosomes. Int J Parasitol 2007; 37:465–473.PubMedCrossRefGoogle Scholar
  64. 64.
    Kalinna BH, Brindley PJ. Manipulating the manipulators: advances in parasitic helminth transgenesis and RNAi. Trends Parasitol 2007; 23:197–204.PubMedCrossRefGoogle Scholar
  65. 65.
    Skelly PJ, Da’dara A, Harn DA. Suppression of cathepsin B expression in Schistosoma mansoni by RNA interference. Int J Parasitol 2003; 33:363–369.PubMedCrossRefGoogle Scholar
  66. 66.
    Gobert GN, Tran MH, Moertel L et al. Transcriptional changes in Schistosoma mansoni during early schistosomula development and in the presence of erythrocytes. PloS Negl Trop Dis 2010; 4:e600.PubMedCrossRefGoogle Scholar
  67. 67.
    Brindley PJ, Kalinna BH, Wong JY et al. Proteolysis of human haemoglobin by schistosome cathepsin D. Mol Biochem Parasitol 2001; 112:103–112.PubMedCrossRefGoogle Scholar
  68. 68.
    Morales ME, Rinaldi G, Gobert GN et al. RNA interference of Schistosoma mansoni cathepsin D, the apical enzyme of the hemoglobin proteolysis cascade. Mol Biochem Parasitol 2008; 157:160–168.PubMedCrossRefGoogle Scholar
  69. 69.
    Hanna RE, Ballway SS, Jura W. Methods for in vitro study of the invasive processes of Fasciola gigantica. Res Vet Sci 1975; 19:96–97.PubMedGoogle Scholar
  70. 70.
    Klinkert MQ, Felleisen R, Link G et al. Primary structures of Sm31/Sm32 diagnostic proteins of Schistosoma mansoni and their identification as proteases. Mol Biochem Parasitol 1989; 33:113–122.PubMedCrossRefGoogle Scholar
  71. 71.
    Ruppel A, Shi YE, Wei DX et al. Sera of Schistosoma japonicum-infected patients cross-react with diagnostic 31/32 kD proteins of S. mansoni. Clin Exp Immunol 1987; 69:291–298.PubMedGoogle Scholar
  72. 72.
    Hola-Jamriska L, Tort J, Dalton JP et al. Cathepsin C from Schistosoma japonicum-cDNA encoding the preproenzyme and its phylogenetic relationships. Eur J Biochem 1998; 255:527–534.PubMedCrossRefGoogle Scholar
  73. 73.
    Michel A, Ghoneim H, Resto M et al. Sequence, characterisation and localisation of a cysteine proteine protease cathepsin L in Schistosoma mansoni. Mol Biochem Parasitol 1995; 73:7–18.PubMedCrossRefGoogle Scholar
  74. 74.
    Dovorak J, Mashiyama ST, Sajid M et al. SmCL3, a gastrodermal cysteine protease of the human blood fluke Schistosoma mansoni. PloS Negl Trop Dis 2009; 3:e449.CrossRefGoogle Scholar
  75. 75.
    Choi JH, Lee JH, Yu HS et al. Molecular and biochemical characterization of hemoglobinase, a cysteine proteinase, in Paragonimus westermani. Korean J Parasitol 2006; 44:187–196.PubMedCrossRefGoogle Scholar
  76. 76.
    Na BK, Kim SH, Lee EG et al. Critical roles for excretory-secretory cysteine proteases during tissue invasion of Paragonimus westermani newly excysted metacercariae. Cell Microbiol 2006; 8:1034–1046.PubMedCrossRefGoogle Scholar
  77. 77.
    Halton DW. Nutritional adaptations to parasitism within the platy helminthes. Int J Parasitol 1997; 27:693–704.PubMedCrossRefGoogle Scholar
  78. 78.
    Senft AW, Senft DG, Himlman GR et al. Influence of hycanthone on morphology and serotonin uptake of Schistosoma mansoni. Am J Trop Med Hyg 1976; 25:832–840.PubMedGoogle Scholar
  79. 79.
    Hoffmann KF, Fitzpatrick JM. Gene expression studies using self-fabricated parasite cDNA microarrays. Methods Mol Biol 2004; 270:219–236.PubMedGoogle Scholar
  80. 80.
    Brindley PJ, Mitreva M, Ghedin E et al. Helminth genomics: The implications for human health. PLos Negl Trop Dis 2009; 3:e538.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Colin Stack
    • 1
  • John P. Dalton
    • 2
  • Mark W. Robinson
    • 3
  1. 1.School of Biomedical and Health SciencesUniversity of Western Sydney (UWS)CampbelltownAustralia
  2. 2.Institute of ParasitologyMcGill UniversitySt. Anne de BellevueCanada
  3. 3.i3 Institute (IBID)University of Technology Sydney (UTS)UltimoAustralia

Personalised recommendations