Advertisement

Cysteine Peptidases of Kinetoplastid Parasites

  • Conor R. Caffrey
  • Ana-Paula Lima
  • Dietmar Steverding
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 712)

Abstract

We review Clan CA Family C1 peptidases of kinetoplastid parasites (Trypanosoma and Leishmania) with respect to biochemical and genetic diversity, genomic organization and stage-specificity and control of expression. We discuss their contributions to parasite metabolism, virulence and pathogenesis and modulation of the host’s immune response. Their applications as vaccine candidates and diagnostic markers as well as their chemical and genetic validation as drug targets are also summarized.

Keywords

Cysteine Protease Visceral Leishmaniasis Trypanosoma Cruzi Human African Trypanosomiasis Trypanosoma Brucei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stuart K, Brun R, Croft S et al. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 2008;118(4):1301–1310.PubMedGoogle Scholar
  2. 2.
    Mottram JC, Helms MJ, Coombs GH et al. Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 2003; 19(4): 182–187.PubMedGoogle Scholar
  3. 3.
    Atkinson HJ, Babbitt PC, Sajid M. The global cysteine peptidase landscape in parasites. Trends Parasitol 2009;25(12):573–581.PubMedGoogle Scholar
  4. 4.
    Caffrey CR, Steverding D. Kinetoplastid papain-like cysteine peptidases. Mol Biochem Parasitol 2009; 167(1):12–19.PubMedGoogle Scholar
  5. 5.
    Lima AP, Mottram JC. Trypanosome-encoded inhibitors of peptidases: unique structural features and possible roles as virulence factors. The open Parasitology Journal 2010.Google Scholar
  6. 6.
    Lonsdale-Eccles JD, Grab DJ. Lysosomal and nonlysosomal peptidyl hydrolases of the bloodstream forms of Trypanosoma brucei brucei. Eur J Biochem 1987; 169(3):467–475.PubMedGoogle Scholar
  7. 7.
    Itow S, Camargo EP. Proteolytic activites in cell extracts of Trypanosoma cruzi. J Protozool 1977;24(4):591–595.PubMedGoogle Scholar
  8. 8.
    North MJ, Coombs GH. Proteinases of Leishmania mexicana amastigotes and promastigotes: analysis by gel electrophoresis. Mol Biochem Parasitol 1981; 3(5):293–300.PubMedGoogle Scholar
  9. 9.
    North MJ, Coombs GH, Barry JD. A comparative study of the proteolytic enzymes of Trypanosoma brucei, T. equiperdum, T. evansi, t. vivax, Leishmania tarentolae and Crithidia fasciculata. Mol Biochem Parasitol 1983; 9(2):161–180.PubMedGoogle Scholar
  10. 10.
    North MJ, Mottram JC, Coombs GH. Cysteine proteinases of parasitic protozoa. Parasitol Today 1990; 6(8):270–275.PubMedGoogle Scholar
  11. 11.
    Rautenberg P, Schadler R, Reinwald E et al. Study on a proteolytic enzyme from Trypanosoma congolense. Purification and some biochemical properties. Mol Cell Biochem 1982; 47(3):151–159.PubMedGoogle Scholar
  12. 12.
    Robertson CD, North MJ, Lockwood BC et al. Analysis of the proteinases of Trypanosoma brucei. J Gen Microbiol 1990; 136(5):921–925.PubMedGoogle Scholar
  13. 13.
    Steiger RF, Van Hoof F, Bontemps J et al. Acid hydrolases of trypanosomatid flagellates. Acta Trop 1979; 36(4):335–341.PubMedGoogle Scholar
  14. 14.
    Mbawa ZR, Webster P, Lonsdale-Eccles JD. Immunolocalization of a cysteine protease within the lysosomal system of Trypanosoma congolense. Eur J Cell Biol 1991; 56(2):243–250.PubMedGoogle Scholar
  15. 15.
    Pupkis MF, Tetley L, Coombs GH. Leishmania mexicana: amastigote hydrolases in unusual lysosomes. Exp Parasitol 1986; 62(1):29–39.PubMedGoogle Scholar
  16. 16.
    Duboise SM, Vannier-Santos MA, Costa-Pinto D et al. The biosynthesis, processing and immunolocalization of Leishmania pifanoi amastigote cysteine proteinases. Mol Biochem Parasitol 1994; 68(1):119–132.PubMedGoogle Scholar
  17. 17.
    Pamer EG, So M, Davis CE. Identification of a developmentally regulated cysteine protease of Trypanosoma brucei. Mol Biochem Parasitol 1989; 33(1):27–32.PubMedGoogle Scholar
  18. 18.
    Caffrey CR, Hansell E, Lucas KD et al. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 2001; 118(1):61–73.PubMedGoogle Scholar
  19. 19.
    Mbawa ZR, Gumm ID, Fish WR et al. Endopeptidase variations among different life-cycle stages of African trypanosomes. Eur J Biochem 1991; 195(1): 183–190.PubMedGoogle Scholar
  20. 20.
    Leon LL, Temporal RM, Soares MJ et al. Proteinase activities during temperature-induced stage differentiation of species complexes of Leishmania. Acta Trop 1994; 56(4):289–298.PubMedGoogle Scholar
  21. 21.
    Pral EM, Bijovsky AT, Balanco JM et al. Leishmania mexicana: proteinase activities and megasomes in axenically cultivated amastigote-like forms. Exp Parasitol 1993; 77(1):62–73.PubMedGoogle Scholar
  22. 22.
    Brooks DR, Denise H, Westrop GD et al. The stage-regulated expression of Leishmaniamexicana CPB cysteine proteases is mediated by an intercistronic sequence element. J Biol Chem 2001; 276(50):47061–47069.PubMedGoogle Scholar
  23. 23.
    Tomas AM, Kelly JM. Stage-regulated expression of cruzipain, the major cysteine protease of Trypanosoma cruzi is independent of the level of RNA1. Mol Biochem Parasitol 1996; 76(1-2):91–103.PubMedGoogle Scholar
  24. 24.
    Lima AP, Dos Reis FC, Serveau C et al. Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Mol Biochem Parasitol 2001; 114(1):41–52.PubMedGoogle Scholar
  25. 25.
    Mottram JC, North MJ, Barry JD et al. A cysteine proteinase cDNa from Trypanosoma brucei predicts an enzyme with an unusual C-terminal extension. FEBS Lett 1989; 258(2):211–215.PubMedGoogle Scholar
  26. 26.
    Pamer EG, Davis CE, Eakin A et al. Cloning and sequencing of the cysteine protease cDNa from Trypanosoma brucei rhodesiense. Nucleic Acids Res 1990; 18(20):6141.PubMedGoogle Scholar
  27. 27.
    Fish WR, Nkhungulu ZM, Muriuki CW et al. Primary structure and partial characterization of a life-cycle-regulated cysteine protease from Trypanosoma (Nannomonas) congolense. Gene 1995; 161(1):125–128.PubMedGoogle Scholar
  28. 28.
    Campetella O, Henriksson J, Aslund L et al. The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is encoded by multiple polymorphic tandemly organized genes located on different chromosomes. Mol Biochem Parasitol 1992; 50(2):225–234.PubMedGoogle Scholar
  29. 29.
    Traub-Cseko YM, Duboise M, Boukai LK et al. Identification of two distinct cysteine proteinase genes of Leishmania pifanoi axenic amastigotes using the polymerase chain reaction. Mol Biochem Parasitol 1993; 57(1):101–115.PubMedGoogle Scholar
  30. 30.
    Mottram JC, Robertson CD, Coombs GH et al. A developmentally regulated cysteine proteinase gene of Leishmania mexicana. Mol Microbiol 1992; 6(14):1925–1932.PubMedGoogle Scholar
  31. 31.
    Souza AE, Waugh S, Coombs GH et al. Characterization of a multi-copy gene for a major stage-specific cysteine proteinase of Leishmania mexicana. FEBS Lett 1992; 311(2): 124–127.PubMedGoogle Scholar
  32. 32.
    Marin-Villa M, Vargas-Inchaustegui DA, Chaves SP et al. The C-terminal extension of Leishmania pifanoi amastigote-specific cysteine proteinase Lpcys2: a putative function in macrophage infection. Mol Biochem Parasitol 2008; 162(1):52–59.PubMedGoogle Scholar
  33. 33.
    Bart G, Coombs GH, Mottram JC. Isolation of lmcpc, a gene encoding a Leishmania mexicana cathepsin-B-like cysteine proteinase. Mol Biochem Parasitol 1995; 73(1-2):271–274.PubMedGoogle Scholar
  34. 34.
    Robertson CD, Coombs GH. Cathepsin B-like cysteine proteases of Leishmania mexicana. Mol Biochem Parasitol 1993; 62(2):271–279.PubMedGoogle Scholar
  35. 35.
    Sakanari JA, Nadler SA, Chan VJ et al. Leishmania major: comparison of the cathepsin l-and B-like cysteine protease genes with those of other trypanosomatids. Exp Parasitol 1997; 85(1):63–76.PubMedGoogle Scholar
  36. 36.
    Garcia MP, Nobrega OT, Teixeira AR et al. Characterisation of a Trypanosoma cruzi acidic 30 kDa cysteine protease. Mol Biochem Parasitol 1998; 91(2):263–272.PubMedGoogle Scholar
  37. 37.
    Nobrega OT, Santos Silva MA, Teixeira AR et al. Cloning and sequencing of tccb, a gene encoding a Trypanosoma cruzi cathepsin B-like protease. Mol Biochem Parasitol 1998; 97(1-2):235–240.PubMedGoogle Scholar
  38. 38.
    Mackey ZB, O’Brien TC, Greenbaum DC et al. A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 2004; 279(46):48426–48433.PubMedGoogle Scholar
  39. 39.
    Mendoza-Palomares C, Biteau N, Giroud C et al. Molecular and biochemical characterization of a cathepsin B-like protease family unique to Trypanosoma congolense. Eukaryot Cell 2008; 7(4):684–697.PubMedGoogle Scholar
  40. 40.
    Somanna A, Mundodi V, Gedamu L. Functional analysis of cathepsin B-like cysteine proteases from Leishmania donovani complex. Evidence for the activation of latent transforming growth factor beta. J Biol Chem 2002; 277(28):25305–25312.PubMedGoogle Scholar
  41. 41.
    Troeberg L, Pike RN, Morty RE et al. Proteases from Trypanosoma brucei brucei. Purification, characterisation and interactions with host regulatory molecules. Eur J Biochem 1996; 238(3):728–736.PubMedGoogle Scholar
  42. 42.
    Mbawa ZR, Gumm ID, Shaw E et al. Characterisation of a cysteine protease from bloodstream forms of Trypanosoma congolense. Eur J Biochem 1992; 204(1):371–379.PubMedGoogle Scholar
  43. 43.
    Clayton C, Adams M, Almeida R et al. Genetic nomenclature for Trypanosoma and Leishmania. Mol Biochem Parasitol 1998; 97(1-2):221–224.PubMedGoogle Scholar
  44. 44.
    Berriman M, Ghedin E, Hertz-Fowler C et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309(5733):416–422.PubMedGoogle Scholar
  45. 45.
    El-Sayed NM, Myler PJ, Bartholomeu DC et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005; 309(5733):409–415.PubMedGoogle Scholar
  46. 46.
    Ivens AC, Peacock CS, Worthey EA et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309(5733):436–442.PubMedGoogle Scholar
  47. 47.
    Matthews KR, Tschudi C, Ullu E. A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic premRNA in trypanosomes. Genes Dev 1994; 8(4):491–501.PubMedGoogle Scholar
  48. 48.
    Lima AP, Tessier DC, Thomas DY et al. Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Mol Biochem Parasitol 1994; 67(2):333–338.PubMedGoogle Scholar
  49. 49.
    Mundodi V, Somanna A, Farrell PJ et al. Genomic organization and functional expression of differentially regulated cysteine protease genes of Leishmania donovani complex. Gene 2002; 282(1-2):257–265.PubMedGoogle Scholar
  50. 50.
    Mottram JC, Brooks DR, Coombs GH. Roles of cysteine proteinases of trypanosomes and Leishmania in host-parasite interactions. Curr Opin Microbiol 1998; 1(4):455–460.PubMedGoogle Scholar
  51. 51.
    Mottram JC, Souza AE, Hutchison JE et al. Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci USA 1996; 93(12):6008–6013.PubMedGoogle Scholar
  52. 52.
    Brooks DR, Tetley L, Coombs GH et al. Processing and trafficking of cysteine proteases in Leishmania mexicana. J Cell Sci 2000; 113(22):4035–4041.PubMedGoogle Scholar
  53. 53.
    Engel JC, Doyle PS, Hsieh I et al. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 1998; 188(4):725–734.PubMedGoogle Scholar
  54. 54.
    Tazeh NN, Silverman JS, Schwartz KJ et al. Role of AP-1 in developmentally regulated lysosomal trafficking in Trypanosoma brucei. Eukaryot Cell 2009; 8(9):1352–1361.PubMedGoogle Scholar
  55. 55.
    Mach L, Mort JS, Glossl J. Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes. J Biol Chem 1994; 269(17):13030–13035.PubMedGoogle Scholar
  56. 56.
    Menard R, Carmona E, Takebe S et al. Autocatalytic processing of recombinant human procathepsin L. contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J Biol Chem 1998; 273(8):4478–4484.PubMedGoogle Scholar
  57. 57.
    Eakin AE, Mills AA, Harth G et al. The sequence, organization and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J Biol Chem 1992; 267(11):7411–7420.PubMedGoogle Scholar
  58. 58.
    Sanderson SJ, Pollock KG, Hilley JD et al. Expression and characterization of a recombinant cysteine proteinase of Leishmania mexicana. Biochem J 2000; 347(2):383–388.PubMedGoogle Scholar
  59. 59.
    Huete-Perez JA, Engel JC, Brinen LS et al. Protease trafficking in two primitive eukaryotes is mediated by a prodomain protein motif. J Biol Chem 1999; 274(23):16249–16256.PubMedGoogle Scholar
  60. 60.
    Reis FC, Costa TF, Sulea T et al. The propeptide of cruzipain—a potent selective inhibitor of the trypanosomal enzymes cruzipain and brucipain and of the human enzyme cathepsin F. FEBS J 2007; 274(5):1224–1234.PubMedGoogle Scholar
  61. 61.
    Monteiro AC, Abrahamson M, Lima AP et al. Identification, characterization and localization of chagasin, a tight-binding cysteine protease inhibitor in Trypanosoma cruzi. J Cell Sci 2001; 114(21):3933–3942.PubMedGoogle Scholar
  62. 62.
    Sanderson SJ, Westrop GD, Scharfstein J et al. Functional conservation of a natural cysteine peptidase inhibitor in protozoan and bacterial pathogens. FEBS Lett 2003; 542(1-3): 12–16.PubMedGoogle Scholar
  63. 63.
    Santos CC, Coombs GH, Lima AP et al. Role of the Trypanosoma brucei natural cysteine peptidase inhibitor ICP in differentiation and virulence. Mol Microbiol 2007; 66(4):991–1002.PubMedGoogle Scholar
  64. 64.
    Santos CC, Sant’anna C, Terres A et al. Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J cell Sci 2005; 118(5):901–915.PubMedGoogle Scholar
  65. 65.
    Authie E, Muteti DK, Mbawa ZR et al. Identification of a 33-kilodalton immunodominant antigen of Trypanosoma congolense as a cysteine protease. Mol Biochem Parasitol 1992; 56(1): 103–116.PubMedGoogle Scholar
  66. 66.
    Lima AP, Scharfstein J, Storer AC et al. Temperature-dependent substrate inhibition of the cysteine proteinase (GP57/51) from Trypanosoma cruzi. Mol Biochem Parasitol 1992; 56(2):335–338.PubMedGoogle Scholar
  67. 67.
    Murta AC, Persechini PM, Padron Tde S et al. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol 1990; 43(1):27–38.PubMedGoogle Scholar
  68. 68.
    Nery ED, Juliano MA, Meldal M et al. Characterization of the substrate specificity of the major cysteine protease (cruzipain) from Trypanosoma cruzi using aportion-mixing combinatorial library and fluorogenic peptides. Biochem J 1997; 323(2):427–433.PubMedGoogle Scholar
  69. 69.
    Boulange A, Serveau C, Brillard M et al. Functional expression of the catalytic domains of two cysteine proteinases from Trypanosoma congolense. Int J Parasitol 2001; 31(13): 1435–1440.PubMedGoogle Scholar
  70. 70.
    Chagas JR, Authie E, Serveau C et al. A comparison of the enzymatic properties of the major cysteine proteinases from Trypanosoma congolense and Trypanosoma cruzi. Mol Biochem Parasitol 1997; 88(1-2):85–94.PubMedGoogle Scholar
  71. 71.
    Gillmor SA, Craik CS, Fletterick RJ. Structural determinants of specificity in the cysteine protease cruzain. Protein Sci 1997; 6(8): 1603–1611.PubMedGoogle Scholar
  72. 72.
    Judice WA, Puzer L, Cotrin SS et al. Carboxydipeptidase activities of recombinant cysteine peptidases. Cruzain of Trypanosoma cruzi and CPB of Leishmania mexicana. Eur J Biochem 2004; 271(5):1046–1053.PubMedGoogle Scholar
  73. 73.
    Nagler DK, Tam W, Storer AC et al. Interdependency of sequence and positional specificities for cysteine proteases of the papain family. Biochemistry 1999; 38(15):4868–4874.PubMedGoogle Scholar
  74. 74.
    Lima AP, Almeida PC, Tersariol IL et al. Heparan sulfate modulates kinin release by Trypanosoma cruzi through the activity of cruzipain. J Biol Chem 2002; 277(8):5875–5881.PubMedGoogle Scholar
  75. 75.
    Hodder AN, Drew DR, Epa VC et al. Enzymic, phylogenetic and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J Biol Chem 2003;278(48):48169–48177.PubMedGoogle Scholar
  76. 76.
    Authie E, Boulange A, Muteti D et al. Immunisation of cattle with cysteine proteinases of Trypanosoma congolense: targetting the disease rather than the parasite. Int J Parasitol 2001; 31(13): 1429–1433.PubMedGoogle Scholar
  77. 77.
    Schnapp AR, Eickhoff CS, Scharfstein J et al. Induction of B-and T-cell responses to cruzipain in the murine model of Trypanosoma cruzi infection. Microbes Infect 2002; 4(8):805–813.PubMedGoogle Scholar
  78. 78.
    Cazorla SI, Frank FM, Becker PD et al. Prime-boost immunization with cruzipain co-administered with MALP-2 triggers a protective immune response able to decrease parasite burden and tissue injury in an experimental Trypanosoma cruzi infection model. Vaccine 2008; 26(16): 1999–2009.PubMedGoogle Scholar
  79. 79.
    Ferreira JH, Gentil LG, Dias SS et al. Immunization with the cysteine proteinase Ldccys1 gene from Leishmania (Leishmania) chagasi and the recombinant Ldccys1 protein elicits protective immune responses in a murine model of visceral leishmaniasis. Vaccine 2008; 26(5):677–685.PubMedGoogle Scholar
  80. 80.
    Rafati S, Salmanian AH, Taheri T et al. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine 2001; 19(25-26):3369–3375.PubMedGoogle Scholar
  81. 81.
    Rafati S, Zahedifard F, Nazgouee F. Prime-boost vaccination using cysteine proteinases type I and II of Leishmania infantum confers protective immunity in murine visceral leishmaniasis. Vaccine 2006; 24(12):2169–2175.PubMedGoogle Scholar
  82. 82.
    Khoshgoo N, Zahedifard F, Azizi H et al. Cysteine proteinase type III is protective against Leishmania infantum infection in BALB/c mice and highly antigenic in visceral leishmaniasis individuals. Vaccine 2008; 26(46):5822–5829.PubMedGoogle Scholar
  83. 83.
    Authie E. Trypanosomiasis and trypanotolerance in cattle: a role for congopain? Parasitol Today 1994; 10(9):360–364.PubMedGoogle Scholar
  84. 84.
    Scharfstein J, Rodrigues MM, Alves CA et al. Trypanosoma cruzi: description of a highly purified surface antigen defined by human antibodies. J Immunol 1983; 131(2):972–976.PubMedGoogle Scholar
  85. 85.
    Martinez J, Campetella O, Frasch AC et al. The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is antigenic in human infections. Infect Immun 1991; 59(11):4275–4277.PubMedGoogle Scholar
  86. 86.
    Scharfstein J, Luquetti A, Murta AC et al. Chagas’ disease: serodiagnosis with purified Gp25 antigen. Am J Trop Med Hyg 1985; 34(6): 1153–1160.PubMedGoogle Scholar
  87. 87.
    Martinez J, Campetella O, Frasch AC et al. The reactivity of sera from chagasic patients against different fragments of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, suggests the presence of defined antigenic and catalytic domains. Immunol Lett 1993; 35(2): 191–196.PubMedGoogle Scholar
  88. 88.
    Rosenthal PJ, Lee GK, Smith RE. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest 1993; 91(3):1052–1056.PubMedGoogle Scholar
  89. 89.
    Croft SL. Kinetoplastida: new therapeutic strategies. Parasite 2008; 15(3):522–527.PubMedGoogle Scholar
  90. 90.
    Mckerrow JH, Rosenthal PJ, Swenerton R et al. Development of protease inhibitors for protozoan infections. Curr Opin Infect Dis 2008; 21(6):668–672.PubMedGoogle Scholar
  91. 91.
    Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 2002; 120(1):1–21.PubMedGoogle Scholar
  92. 92.
    Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 2000;1477(1-2):98–111.PubMedGoogle Scholar
  93. 93.
    Ashall F, Angliker H, Shaw E. Lysis of trypanosomes by peptidyl fluoromethyl ketones. Biochem Biophys Res Commun 1990; 170(2):923–929.PubMedGoogle Scholar
  94. 94.
    Scory S, Caffrey CR, Stierhof YD et al. Trypanosoma brucei: killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2. Exp Parasitol 1999; 91(4):327–333.PubMedGoogle Scholar
  95. 95.
    Scory S, Stierhof YD, Caffrey CR et al. The cysteine proteinase inhibitor Z-Phe-Ala-CHN2 alters cell morphology and Cell division activity of Trypanosoma brucei bloodstream forms in vivo. Kinetoplastid Biol Dis 2007; 6:2.PubMedGoogle Scholar
  96. 96.
    Du X, Hansell E, Engel JC et al. Aryl ureas represent a new class of anti-trypanosomal agents. Chem Biol 2000; 7(9):733–742.PubMedGoogle Scholar
  97. 97.
    Bryant C, Kerr ID, Debnath M et al. Novel nonpeptidic vinylsulfones targeting the S2 and S3 subsites of parasite cysteine proteases. Bioorg Med Chem Lett 2009; 19(21):6218–6221.PubMedGoogle Scholar
  98. 98.
    Chen YT, Lira R, Hansell E et al. Synthesis of macrocyclic trypanosomal cysteine protease inhibitors. Bioorg Med Chem Lett 2008; 18(22):5860–5863.PubMedGoogle Scholar
  99. 99.
    Jaishankar P, Hansell E, Zhao DM et al. Potency and selectivity of P2/P3-modified inhibitors of cysteine proteases from trypanosomes. Bioorg Med Chem Lett 2008; 18(2):624–628.PubMedGoogle Scholar
  100. 100.
    Roush WR, Cheng J, Knapp-Reed B et al. Potent second generation vinyl sulfonamide inhibitors of the trypanosomal cysteine protease cruzain. Bioorg Med Chem Lett 2001; 11(20):2759–2762.PubMedGoogle Scholar
  101. 101.
    Roush WR, Gonzalez FV, McKerrow JH et al. Design and synthesis of dipeptidyl ‘alphA,beta’-epoxy ketones, potent irreversible inhibitors of the cysteine protease cruzain. Bioorg Med Chem Lett 1998; 8(19):2809–2812.PubMedGoogle Scholar
  102. 102.
    Ferreira RS, Bryant C, Ang KK et al. Divergent Modes of Enzyme Inhibition in a Homologous Structure-activity Series. J Med Chem 2009; 52(16):5005–5008.PubMedGoogle Scholar
  103. 103.
    McKerrow JH, Doyle PS, Engel JC et al. Two approaches to discovering and developing new drugs for chagas disease. Mem Inst Oswaldo Cruz 2009; 104:263–269.PubMedGoogle Scholar
  104. 104.
    Caffrey CR, Scory S, Steverding D. Cysteine proteinases of trypanosome parasites: novel targets for chemotherapy. Curr Drug Targets 2000; 1(2):155–162.PubMedGoogle Scholar
  105. 105.
    Troeberg L, Chen X, Flaherty TM et al. Chalcone, acyl hydrazide and related amides kill cultured Trypanosoma brucei brucei. Mol Med 2000; 6(8):660–669.PubMedGoogle Scholar
  106. 106.
    Vicik R, Hoerr V, Glaser M et al. Aziridine-2,3-dicarboxylate inhibitors targeting the major cysteine protease of Trypanosoma brucei as lead trypanocidal agents. Bioorg Med Chem Lett 2006; 16(10):2753–2757.PubMedGoogle Scholar
  107. 107.
    Mallari JP, Shelat A, Kosinski A et al. Discovery of trypanocidal thiosemicarbazone inhibitors of rhodesain and TbcatB. Bioorg Med Chem Lett 2008; 18(9):2883–2885.PubMedGoogle Scholar
  108. 108.
    Mallari JP, Shelat AA, Obrien T et al. Development of potent purine-derived nitrile inhibitors of the trypanosomal protease TbcatB. J Med Chem 2008; 51(3):545–552.PubMedGoogle Scholar
  109. 109.
    Watts KR, Ratnam J, Ang KH et al. Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi. Bioorg Med Chem 2010; 18(7):2566–2574.PubMedGoogle Scholar
  110. 110.
    Agius B, Vogler B, Stokes SL et al. Inhibition of cruzain by triterpenoids isolated from a Salacia species from Monteverde, Costa Rica. Nat Prod Commun 2007; 2:1083–1084.Google Scholar
  111. 111.
    Setzer W, Stokes SL, Bansala A et al. Chemical composition and cruzain inhibitory activity of Croton draco bark essential oil from Monteverde, Costa Rica. Nat Prod Commun 2007; 2:685–689.Google Scholar
  112. 112.
    Mallari JP, Shelat AA, Kosinski A et al. Structure-guided development of selective TbcatB inhibitors. J Med Chem 2009; 52(20):6489–6493.PubMedGoogle Scholar
  113. 113.
    Nkemgu NJ, Grande R, Hansell E et al. Improved trypanocidal activities of cathepsin L inhibitors. Int J Antimicrob Agents 2003; 22(2):155–159.PubMedGoogle Scholar
  114. 114.
    Nikolskaia OV, de ALAP, Kim YV et al. Blood-brain barrier traversal by african trypanosomes requires calcium signaling induced by parasite cysteine protease. J Clin Invest 2006; 116(10):2739–2747.PubMedGoogle Scholar
  115. 115.
    Abdulla MH, O’Brien T, Mackey ZB et al. RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PloS Negl Trop Dis 2008; 2(9):e298.PubMedGoogle Scholar
  116. 116.
    Grab DJ, Garcia-Garcia JC, Nikolskaia OV et al. Protease activated receptor signaling is required for african trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl Trop Dis 2009; 3(7):e479.PubMedGoogle Scholar
  117. 117.
    O’Brien TC, Mackey ZB, Fetter RD et al. A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 2008; 283(43):28934–28943.PubMedGoogle Scholar
  118. 118.
    Alexander J, Coombs GH, Mottram JC. Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J Immunol 1998; 161(12):6794–6801.PubMedGoogle Scholar
  119. 119.
    Buxbaum LU, Denise H, Coombs GH et al. Cysteine protease B of Leishmania mexicana inhibits host Th1 responses and protective immunity. J Immunol 2003; 171(7):3711–3717.PubMedGoogle Scholar
  120. 120.
    Mottram JC, Coombs GH, Alexander J. Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol 2004; 7(4):375–381.PubMedGoogle Scholar
  121. 121.
    Pollock KG, McNeil KS, Mottram JC et al. The Leishmania mexicana cysteine protease, CPB2.8, induces potent Th2 responses. J Immunol 2003; 170(4):1746–1753.PubMedGoogle Scholar
  122. 122.
    Denise H, McNeil K, Brooks DR et al. Expression of multiple CPB genes encoding cysteine proteases is required for Leishmania mexicana virulence in vivo. Infect Immun 2003; 71(6):3190–3195.PubMedGoogle Scholar
  123. 123.
    Souza AE, Bates PA, Coombs GH et al. Null mutants for the lmcpa cysteine proteinase gene in Leishmania mexicana. Mol Biochem Parasitol 1994; 63(2):213–220.PubMedGoogle Scholar
  124. 124.
    Denise H, Poot J, Jimenez M et al. Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5. BMC Mol Biol 2006; 7:42.PubMedGoogle Scholar
  125. 125.
    Saravia NG, Escorcia B, Osorio Y et al. Pathogenicity and protective immunogenicity of cysteine proteinase-deficient mutants of Leishmania mexicana in nonmurine models. Vaccine 2006; 24(19):4247–4259.PubMedGoogle Scholar
  126. 126.
    Bart G, Frame MJ, Carter R et al. Cathepsin B-like cysteine proteinase-deficient mutants of Leishmania mexicana. Mol Biochem Parasitol 1997; 88(1-2):53–61.PubMedGoogle Scholar
  127. 127.
    Cameron P, McGachy A, Anderson M et al. Inhibition of lipopolysaccharide-induced macrophage IL-12 production by Leishmania mexicana amastigotes: the role of cysteine peptidases and the NF-kappaB signaling pathway. J Immunol 2004; 173(5):3297–3304.PubMedGoogle Scholar
  128. 128.
    Williams RA, Tetley L, Mottram JC et al. Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol 2006; 61(3):655–674.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Conor R. Caffrey
    • 1
  • Ana-Paula Lima
    • 2
  • Dietmar Steverding
    • 3
  1. 1.Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences, Byers HallUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro, Bloco G, C. C. S., Cidade UniversitáriaIlha do FundãoBrazil
  3. 3.BioMedical Research Centre, School of Medicine, Health Policy and PracticeUniversity of East AngliaNorwichUK

Personalised recommendations