Cathepsin Proteases in Toxoplasma gondii

  • Zhicheng Dou
  • Vern B. Carruthers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 712)

Abstract

Cysteine proteases are important for the growth and survival of apicomplexan parasites that infect humans. The apicomplexan Toxoplasma gondii expresses five members of the C1 family of cysteine proteases, including one cathepsin L-like (TgCPL), one cathepsin B-like (TgCPB) and three cathepsin C-like (TgCPC1, 2 and 3) proteases. Recent genetic, biochemical and structural studies reveal that cathepsins function in microneme and rhoptry protein maturation, host cell invasion, replication and nutrient acquisition. here, we review the key features and roles of T. gondii cathepsins and discuss the therapeutic potential for specific inhibitor development.

Keywords

Hydrolysis Cysteine Polypeptide Thiol Malaria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lopez-Otin C, Bond JS. Proteases: Multifunctional enzymes in life and disease. J Biol Chem 2008; 283:30433–30437.PubMedCrossRefGoogle Scholar
  2. 2.
    Rawlings ND, Barrett AJ, Bateman A. MEROPS: The peptidase database. Nucleic Acids Res 2010;38:D227–D233.PubMedCrossRefGoogle Scholar
  3. 3.
    Barrett AJ, Kirschke H. Cathepsin B et al. Methods Enzymol 1981; 80 Pt C:535–561.PubMedCrossRefGoogle Scholar
  4. 4.
    Kirschke H, Barrett AJ, Rawlings ND. Lysosomal Cysteine Proteases. 2nd ed. Oxford; New York: Oxford University Press; 1998.Google Scholar
  5. 5.
    Guicciardi ME, Deussing J, Miyoshi H et al. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 2000; 106:1127–1137.PubMedCrossRefGoogle Scholar
  6. 6.
    Barrett AJ, Rawlings ND, Woessner JF. Handbook of Proteolytic Enzymes. San Diego: Academic Press; 2004.Google Scholar
  7. 7.
    Denhardt DT, Greenberg AH, Egan SE et al. Cysteine proteinase cathepsin L expression correlates closely with the metastatic potential of H-ras-transformed murine fibroblasts. Oncogene 1987; 2:55–59.PubMedGoogle Scholar
  8. 8.
    Frade R, Rodrigues-Lima F, Huang S et al. Procathepsin-L, a proteinase that cleaves human c3 (the third component of complement), confers high tumorigenic and metastatic properties to human melanoma cells. Cancer Res 1998; 58:2733–2736.PubMedGoogle Scholar
  9. 9.
    Amuthan G, Biswas G, Zhang SY et al. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 2001; 20:1910–1920.PubMedCrossRefGoogle Scholar
  10. 10.
    Dluzewski AR, Rangachari K, Wilson RJM et al. Plasmodium falciparum: Protease inhibitors and inhibition of erythrocyte invasion. Exp Parasitol 1986; 62:416–422.PubMedCrossRefGoogle Scholar
  11. 11.
    Rosenthal PJ, Mckerrow JH, Aikawa M et al. A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest 1988; 82:1560–1566.PubMedCrossRefGoogle Scholar
  12. 12.
    Rosenthal PJ, Mckerrow JH, Rasnick D et al. Plasmodium falciparum: Inhibitors of lysosomal cysteine proteinases inhibit a trophozoite proteinase and block parasite development. Mol Biochem Parasitol 1989; 35:177–183.PubMedCrossRefGoogle Scholar
  13. 13.
    Rosenthal PJ, Wollish WS, Palmer JT et al. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest 1991; 88:1467–1472.PubMedCrossRefGoogle Scholar
  14. 14.
    Rosenthal PJ. Plasmodium falciparum: Effects of proteinase inhibitors on globin hydrolysis by cultured malaria parasites. Exp Parasitol 1995; 80:272–281.PubMedCrossRefGoogle Scholar
  15. 15.
    Rosenthal PJ, Olson JE, Lee GK et al. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. Antimicrob Agents Chemother 1996; 40:1600–1603.PubMedGoogle Scholar
  16. 16.
    Greenbaum DC, Baruch A, Grainger M et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 2002; 298:2002–2006.PubMedCrossRefGoogle Scholar
  17. 17.
    Sijwali PS, Rosenthal PJ. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA 2004; 101:4384–4389.PubMedCrossRefGoogle Scholar
  18. 18.
    Eksi S, Czesny B, Greenbaum DC et al. Targeted disruption of Plasmodium falciparum cysteine protease, falcipain 1, reduces oocyst production, not erythrocytic stage growth. Mol Microbiol 2004; 53:243–250.PubMedCrossRefGoogle Scholar
  19. 19.
    Caffrey CR, Hansell E, Lucas KD et al. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 2001; 118:61–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Abdulla MH, O’Brien T, Mackey ZB et al. RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PloS Negl Trop Dis 2008; 2:e298.PubMedCrossRefGoogle Scholar
  21. 21.
    Grab DJ, Garcia-Garcia JC, Nikolskaia OV et al. Protease activated receptor signaling is required for african trypanosome traversal of human brain microvascular endothelial cells. PloS Negl Trop Dis 2009; 3:e479.PubMedCrossRefGoogle Scholar
  22. 22.
    Mackey ZB, O’Brien TC, Greenbaum DC et al. A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 2004; 279:48426–48433.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Brien TC, Mackey ZB, Fetter RD et al. A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 2008; 283:28934–28943.PubMedCrossRefGoogle Scholar
  24. 24.
    Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363:1965–1976.PubMedCrossRefGoogle Scholar
  25. 25.
    Dobrowolski JM, Sibley LD. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 1996; 84:933–939.PubMedCrossRefGoogle Scholar
  26. 26.
    Carruthers VB. Proteolysis and Toxoplasma invasion. Int J Parasitol 2006; 36:595–600.PubMedCrossRefGoogle Scholar
  27. 27.
    Hakansson S, Charron AJ, Sibley LD. Toxoplasma evacuoles: A two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J 2001; 20:3132–3144.PubMedCrossRefGoogle Scholar
  28. 28.
    VK, Qi H, Beckers CJ et al. The protozoan parasite Toxoplasma gondii targets proteins to dense granules and the vacuolar space using both conserved and unusual mechanisms. J Cell Biol 1998; 141:1323–1333.PubMedCrossRefGoogle Scholar
  29. 29.
    Shaw MK, HE CY, Roos DS et al. Proteasome inhibitors block intracellular growth and replication of Toxoplasma gondii. Parasitology 2000; 121 (Pt 1):35–47.PubMedCrossRefGoogle Scholar
  30. 30.
    Que X, Ngo H, Lawton J et al. The cathepsin B of Toxoplasma gondii, toxopain-1, is critical for parasite invasion and rhoptry protein processing. J Biol Chem 2002; 277:25791–25797.PubMedCrossRefGoogle Scholar
  31. 31.
    Teo CF, Zhou XW, Bogyo M et al. Cysteine protease inhibitors block Toxoplasma gondii microneme secretion and cell invasion. Antimicrob Agents Chemother 2007; 51:679–688.PubMedCrossRefGoogle Scholar
  32. 32.
    Larson ET, Parussini F, Huynh MH et al. Toxoplasma gondii cathepsin l is the primary target of the invasion inhibitory compound LHVS. J Biol Chem 2009.Google Scholar
  33. 33.
    Parussini F, Coppens I, Shah PP et al. Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol 2010; in press.Google Scholar
  34. 34.
    Miranda K, Pace DA, Cintron R et al. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol 2010.Google Scholar
  35. 35.
    Huang R, Que X, Hirata K et al. The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 2009; 164:86–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Nichols BA, Chiappino ML, Pavesio CE. Endocytosis at the micropore of Toxoplasma gondii. Parasitol res 1994; 80:91–98.PubMedCrossRefGoogle Scholar
  37. 37.
    Botero-Kleiven S, VF, Lindh J et al. Receptor-mediated endocytosis in an apicomplexan parasite (toxoplasma gondii). Exp Parasitol 2001; 98:134–144.PubMedCrossRefGoogle Scholar
  38. 38.
    Turk D, Janjic V, Stern I et al. Structure of human dipeptidyl peptidase I (cathepsin C): Exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J 2001; 20:6570–6582.PubMedCrossRefGoogle Scholar
  39. 39.
    Que X, Engel JC, Ferguson D et al. Cathepsin cs are key for the intracellular survival of the protozoan parasite, Toxoplasma gondii. J Biol Chem 2007; 282:4994–5003.PubMedCrossRefGoogle Scholar
  40. 40.
    Fruton JS, Mycek MJ. Studies on beef spleen cathepsin C. Arch Biochem Biophys 1956; 65:11–20.PubMedCrossRefGoogle Scholar
  41. 41.
    McDonald JK, Reilly TJ, Zeitman BB et al. Cathepsin C: A chloride-requiring enzyme. Biochem Biophys Res Commun 1966; 22:771–775.PubMedCrossRefGoogle Scholar
  42. 42.
    Storch S, Pohl S, Braulke T. A dileucine motif and a cluster of acidic amino acids in the second cytoplasmic domain of the batten disease-related CLN3 protein are required for efficient lysosomal targeting. J Biol Chem 2004; 279:53625–53634.PubMedCrossRefGoogle Scholar
  43. 43.
    Illy C, Quraishi O, Wang J et al. Role of the occluding loop in cathepsin B activity. J Biol Chem 1997; 272:1197–1202.PubMedCrossRefGoogle Scholar
  44. 44.
    Dahl SW, Halkier T, Lauritzen C et al. Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 2001; 40:1671–1678.PubMedCrossRefGoogle Scholar
  45. 45.
    Leander BS, Clopton RE, Keeling PJ. Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNa and beta-tubulin. Int J Syst Evol Microbiol 2003; 53:345–354.PubMedCrossRefGoogle Scholar
  46. 46.
    Harper JM, Huynh MH, Coppens I et al. A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2-M2AP invasion complex. Mol Biol Cell 2006; 17:4551–4563.PubMedCrossRefGoogle Scholar
  47. 47.
    Brydges SD, Harper JM, Parussini F et al. A transient forward-targeting element for microneme-regulated secretion in Toxoplasma gondii. Biol Cell 2008; 100:253–264.PubMedCrossRefGoogle Scholar
  48. 48.
    El Hajj H, Papoin J, Cerede O et al. Molecular signals in the trafficking of Toxoplasma gondii protein MIC3 to the micronemes. Eukaryot Cell 2008; 7:1019–1028.PubMedCrossRefGoogle Scholar
  49. 49.
    Rabenau KE, Sohrabi A, Tripathy A et al. TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein tgMIC2. Mol Microbiol 2001; 41:537–547.PubMedCrossRefGoogle Scholar
  50. 50.
    Brydges SD, Sherman GD, Nockemann S et al. Molecular characterization of TgMIC5, aproteolytically processed antigen secreted from the micronemes of Toxoplasma gondii. Mol Biochem Parasitol 2000; 111:51–66.PubMedCrossRefGoogle Scholar
  51. 51.
    Bradley PJ, Ward C, Cheng SJ et al. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 2005; 280:34245–34258.PubMedCrossRefGoogle Scholar
  52. 52.
    Goldszmid RS, Coppens I, Lev A et al. Host ER-parasitophorous vacuole interaction provides a route of entry for antigen cross-presentation in Toxoplasma gondii-infected dendritic cells. J Exp Med 2009; 206:399–410.PubMedCrossRefGoogle Scholar
  53. 53.
    Que X, Wunderlich A, Joiner KA et al. Toxopain-1 is critical for infection in a novel chicken embryo model of congenital toxoplasmosis. Infect Immun 2004; 72:2915–2921.PubMedCrossRefGoogle Scholar
  54. 54.
    Shaw MK, Roos DS, Tilney LG. Cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii. Microbes Infect 2002; 4:119–132.PubMedCrossRefGoogle Scholar
  55. 55.
    Huynh MH, Carruthers VB. Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryotic Cell 2009; 8:530–539.PubMedCrossRefGoogle Scholar
  56. 56.
    Agop-Nersesian C, Naissant B, Ben Rached F et al. Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PloS Pathog 2009; 5:e1000270.PubMedCrossRefGoogle Scholar
  57. 57.
    Breinich MS, Ferguson DJ, Foth BJ et al. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr Biol 2009; 19:277–286.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhicheng Dou
    • 1
  • Vern B. Carruthers
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of Michigan School of MedicineAnn ArborUSA

Personalised recommendations