Cysteine Proteases from Bloodfeeding Arthropod Ectoparasites

  • Daniel Sojka
  • Ivo M. B. Francischetti
  • Eric Calvo
  • Michalis Kotsyfakis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 712)


Cysteine proteases have been discovered in various bloodfeeding ectoparasites. Here, we assemble the available information about the function of these peptidases and reveal their role in hematophagy and parasite development. While most of the data shed light on key proteolytic events that play a role in arthropod physiology, we also report on the association of cysteine proteases with arthropod vectorial capacity. With emphasis on ticks, specifically Ixodes ricinus, we finally propose a model about the contribution of cysteine peptidases to blood digestion and how their concerted action with other tick midgut proteases leads to the absorbance of nutrients by the midgut epithelial cells.


Cysteine Protease Blood Feeding Ixodid Tick Midgut Cell Hard Tick 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nava S, Guglielmone AA, Mangold AJ. An overview of systematics and evolution of ticks. Front Biosci 2009; 14:2857–2877.PubMedCrossRefGoogle Scholar
  2. 2.
    de la Fuente J, Estrada-Pena A, Venzal JM et al. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 2008; 13:6938–6946.PubMedCrossRefGoogle Scholar
  3. 3.
    Grandjean O, Aeschlimann A. Contribution to the study of digestion in ticks: histology and fine structure of the midgut ephithelium of Ornithodorus moubata, Murray (Ixodoidea, Argasidae). Acta Trop 1973; 30:193–212.PubMedGoogle Scholar
  4. 4.
    Obenchain FD, Galun R. Physiology of Ticks, 1st ed. Oxford: Pergamon Press, 1982.Google Scholar
  5. 5.
    Harrison FW, Foelix RF. Chelicerate arthropoda. New York; Chichester: Wiley; 1999.Google Scholar
  6. 6.
    Tarnowski BI, Coons LB. Ultrastructure of the midgut and blood meal digestion in the adult tick Dermacentor variabilis. Exp Appl Acarol 1989; 6:263–289.PubMedCrossRefGoogle Scholar
  7. 7.
    Sauer JR, Hair JA. Morphology, Physiology and Behavioral Biology of Ticks. New York: Halsted Press, 1986.Google Scholar
  8. 8.
    Kaufman WR. Tick-host interaction: a synthesis of current concepts. Parasitol Today 1989; 5:47–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Sonenshine DE. Biology of Ticks. Oxford: Oxford University Press, 1991.Google Scholar
  10. 10.
    Reich CI, Zorzopulos J. Boophilus microplus: characterization of larval proteases. Exp Parasitol 1978; 44:1–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Zorzopulos J, Reich CI, Galassi N. Boophilus microplus: characterization of larval phosphomonoesterases and isolation of subcellular fractions with high phosphatase activity. Exp Parasitol 1978; 45:128–138.PubMedCrossRefGoogle Scholar
  12. 12.
    Renard G, Garcia JF, Cardoso FC et al. Cloning and functional expression of a Boophilus microplus cathepsin l-like enzyme. Insect Biochem Mol Biol 2000; 30:1017–1026.PubMedCrossRefGoogle Scholar
  13. 13.
    Renard G, Lara FA, de Cardoso FC et al. Expression and immunolocalization of a Boophilus microplus cathepsin L-like enzyme. Insect Mol Biol 2002; 11:325–328.PubMedCrossRefGoogle Scholar
  14. 14.
    Mulenga A, Sugimoto C, Onuma M. Characterization of proteolytic enzymes expressed in the midgut of Haemaphysalis longicornis. Jpn J Vet Res 1999; 46:179–184.PubMedGoogle Scholar
  15. 15.
    Mulenga A, Sugimoto C, Ingram G et al. Molecular cloning of two Haemaphysalis longicornis cathepsin L-like cysteine proteinase genes. J Vet Med Sci 1999; 61:497–502.PubMedCrossRefGoogle Scholar
  16. 16.
    Yamaji K, Tsuji N, Miyoshi T et al. Hemoglobinase activity of a cysteine protease from the ixodid tick Haemaphysalis longicornis. Parasitol Int 2009; 58:232–237.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsuji N, Miyoshi T, Battsetseg B et al. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PloS Pathog 2008; 4:e1000062.PubMedCrossRefGoogle Scholar
  18. 18.
    Sojka D, Hajdusek O, Dvorak J et al. IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int J Parasitol 2007; 37:713–724.PubMedCrossRefGoogle Scholar
  19. 19.
    Gotz MG, James KE, Hansell E et al. Aza-peptidyl Michael acceptors. A new class of potent and selective inhibitors of asparaginyl endopeptidases (legumains) from evolutionarily diverse pathogens. J Med Chem 2008; 51:2816–2832.PubMedCrossRefGoogle Scholar
  20. 20.
    Ovat A, Muindi F, Fagan C et al. Aza-peptidyl Michael acceptor and epoxide inhibitors—potent and selective inhibitors of Schistosoma mansoni and Ixodes ricinus legumains (asparaginyl endopeptidases). J Med Chem 2009; 52:7192–7210.PubMedCrossRefGoogle Scholar
  21. 21.
    Abdul Alim M, Tsuji N, Miyoshi T et al. Characterization of asparaginyl endopeptidase, legumain induced by blood feeding in the ixodid tick Haemaphysalis longicornis. Insect Biochem Mol Bio 2007;37:911–922.CrossRefGoogle Scholar
  22. 22.
    Alim MA, Tsuji N, Miyoshi T et al. HlLgm2, a member of asparaginyl endopeptidases/legumains in the midgut of the ixodid tick Haemaphysalis longicornis, is involved in blood-meal digestion. J Insect Physiol 2008; 54:573–585.PubMedCrossRefGoogle Scholar
  23. 23.
    Alim MA, Tsuji N, Miyoshi T et al. Developmental stage-and organ-specific expression profiles of asparaginyl endopeptidases/legumains in the ixodid tick Haemaphysalis longicornis. J Vet Med Sci 2008; 70:1363–1366.PubMedCrossRefGoogle Scholar
  24. 24.
    Alim MA, Tsuji N, Miyoshi T et al. Legumains from the hard tick Haemaphysalis longicornis play modulatory roles in blood feeding and gut cellular remodelling and impact on embryogenesis. Int J Parasitol 2009; 39:97–107.PubMedCrossRefGoogle Scholar
  25. 25.
    Boldbaatar D, Sikalizyo Sikasunge C, Battsetseg B et al. Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol 2006; 36:25–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Sojka D, Franta Z, Horn M et al. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit Vectors 2008; 1:7.PubMedGoogle Scholar
  27. 27.
    Hatta T, Kazama K, Miyoshi T et al. Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Int J Parasitol 2006; 36:1123–1132.PubMedCrossRefGoogle Scholar
  28. 28.
    Caffrey CR, McKerrow JH, Salter JP et al. Blood ‘n’ guts: an update on schistosome digestive peptidases. Trends Parasitol 2004; 20:241–248.PubMedCrossRefGoogle Scholar
  29. 29.
    Delcroix M, Sajid M, Caffrey CR et al. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 2006; 281:39316–39329.PubMedCrossRefGoogle Scholar
  30. 30.
    Williamson AL, Brindley PJ, Knox DP et al. Digestive proteases of blood-feeding nematodes. Trends Parasitol 2003; 19:417–423.PubMedCrossRefGoogle Scholar
  31. 31.
    Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midguttranscripts from the hard tick, Dermacentor variabilis(Acari:Ixodidae). BMc Genomics 2008; 9:552.PubMedCrossRefGoogle Scholar
  32. 32.
    Horn M, Nussbaumerova M, Sanda M et al. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem Biol 2009; 16:1053–1063.PubMedCrossRefGoogle Scholar
  33. 33.
    Grunclova L, Horn M, Vancova M et al. Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biol Chem 2006; 387:1635–1644.PubMedCrossRefGoogle Scholar
  34. 34.
    Fagotto F. Yolk degradation in tick eggs: I. occurrence of a cathepsin L-like acid proteinase in yolk spheres. Arch Insect Biochem Physiol 1990; 14:217–235.PubMedCrossRefGoogle Scholar
  35. 35.
    Fagotto F. Yolk degradation in tick eggs: II. Evidence that cathepsin L-like proteinase is stored as a latent, acid-activable proenzyme. Arch Insect Biochem Physiol 1990; 14:237–252.PubMedCrossRefGoogle Scholar
  36. 36.
    Seixas A, Dos Santos PC, Velloso FF et al. A Boophilus microplus vitellin-degrading cysteine endopeptidase. Parasitology 2003; 126(Pt 2): 155–163.PubMedCrossRefGoogle Scholar
  37. 37.
    Seixas A, Leal AT, Nascimento-Silva MC et al. Vaccine potential of a tick vitellin-degrading enzyme (VTDCE). Vet Immunol Immunopathol 2008; 124:332–340.PubMedCrossRefGoogle Scholar
  38. 38.
    Estrela A, Seixas A, Termignoni C. A cysteine endopeptidase from tick Rhipicephalus (Boophilus) microplus) larvae with vitellin digestion activity. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:410–416.PubMedCrossRefGoogle Scholar
  39. 39.
    Cho WL, Tsao SM, Hays AR et al. Mosquito cathepsin B-like protease involved in embryonic degradation of vitellin is produced as a latent extraovarian precursor. J Biol Chem 1999; 274:13311–13321.PubMedCrossRefGoogle Scholar
  40. 40.
    Nirmala X, Marinotti O, James AA. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae. Insect Mol Biol 2005; 14:95–103.PubMedCrossRefGoogle Scholar
  41. 41.
    Uchida K, Ohmori D, Ueno T et al. Preoviposition activation of cathepsin-like proteinases in degenerating ovarian follicles of the mosquito culex pipiens pallens. Dev Biol 2001; 237:68–78.PubMedCrossRefGoogle Scholar
  42. 42.
    Cooper DM, Granville DJ, Lowenberger C. The insect caspases. Apoptosis 2009; 14:247–256.PubMedCrossRefGoogle Scholar
  43. 43.
    Cooper DM, Pio F, Thi EP et al. Characterization of Aedes Dredd: a novel initiator caspase from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 2007; 37:559–569.PubMedCrossRefGoogle Scholar
  44. 44.
    Cooper DM, Thi EP, Chamberlain CM et al. Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 2007; 16:563–572.PubMedGoogle Scholar
  45. 45.
    Cooper DM, Chamberlain CM, Lowenberger C. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 2009; 39:47–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Zieler H, Dvorak JA. Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proc Natl Acad Sci USA 2000; 97:11516–11521.PubMedCrossRefGoogle Scholar
  47. 47.
    Abraham EG, Islam S, Srinivasan P et al. Analysis of the Plasmodium and Anopheles transcriptional repertoire during ookinete development and midgut invasion. J Biol Chem 2004; 279:5573–5580.PubMedCrossRefGoogle Scholar
  48. 48.
    Ahmed AM, Hurd H. Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis. Microbes Infect 2006; 8:308–315.PubMedCrossRefGoogle Scholar
  49. 49.
    Yan J, Cheng Q, Li CB et al. Molecular characterization of three gut genes from Glossina morsitans morsitans:cathepsin B, zinc-metalloprotease and zinc-carboxypeptidase. Insect Mol Biol 2002; 11:57–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Kollien AH, Waniek PJ, Nisbet AJ et al. Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol Biol 2004; 13:569–579.PubMedCrossRefGoogle Scholar
  51. 51.
    Houseman JG, Downe AER. Activity cycles and the control of four digestive proteinases in the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). J Insect Physiol 1983; 29:141–148.CrossRefGoogle Scholar
  52. 52.
    Billingsley PF, Downe AER. Ultrastructural localisation of cathepsin B in the midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae) during blood digestion. Int J Insect Morph Embryol 1988; 17:295–302.CrossRefGoogle Scholar
  53. 53.
    Terra WR, Ferreira C, Garcia ES. Origin, distribution, properties and functions of the major Rhodnius prolixus midgut hydrolases. Insect Biochem 1988; 18:423–434.CrossRefGoogle Scholar
  54. 54.
    Houseman JG, Downe AER. Characterization of an acidic proteinase from the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Insect Biochem 1982; 12:651–655.CrossRefGoogle Scholar
  55. 55.
    Lopez-Ordonez T, Rodriguez MH, Hernandez-Hernandez FD. Characterization of a cDNa encoding a cathepsin L-like protein of Rhodnius prolixus. Insect Mol Biol 2001; 10:505–511.PubMedCrossRefGoogle Scholar
  56. 56.
    Ferreira-DaSilva CT, Gombarovits ME, Masuda H et al. Proteolytic activation of canatoxin, a plant toxic protein, by insect cathepsin-like enzymes. Arch Insect Biochem Physiol 2000; 44:162–171.PubMedCrossRefGoogle Scholar
  57. 57.
    Carlini CR, Oliveira AE, Azambuja P et al. Biological effects of canatoxin in different insect models: evidence for a proteolytic activation of the toxin by insect cathepsinlike enzymes. J Econ Entomol 1997; 90:340–348.PubMedGoogle Scholar
  58. 58.
    Perkins PS, Haley D, Rosenblatt R. Proteolytic enzymes in the blood-feeding parasitic copepod, Phrixocephalus cincinnatus. J Parasitol 1997; 83:6–12.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Daniel Sojka
    • 1
  • Ivo M. B. Francischetti
    • 2
  • Eric Calvo
    • 2
  • Michalis Kotsyfakis
    • 3
  1. 1.Laboratory of Vector Immunology, Institute of ParasitologyBiology Centre of the Academy of Sciences of the Czech RepublicCeske BudejoviceCzech Republic
  2. 2.Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthRockvilleUSA
  3. 3.Laboratory of Genomics and Proteomics of Disease Vectors, Institute of ParasitologyBiology Centre of the Academy of Sciences of the Czech RepublicCzech Republic

Personalised recommendations