Skip to main content

Secondary Narcolepsy

  • Chapter
  • First Online:
Narcolepsy

Abstract

Idiopathic narcolepsy with cataplexy is caused by a deficiency of the hypothalamic hypocretin system [1]. Selective loss of hypocretin-­producing neurons in the dorsolateral hypothalamus with sparing of adjacent melanin-concentrating hormone cells, a tight linkage to the HLA DQB1*0602 haplotype, and the recent discovery of specific antibodies (Trib2) suggest an autoimmune etiology [2–6]. The disorder is characterized by excessive daytime sleepiness (EDS) and cataplexy. In addition, fragmented nocturnal sleep, hypnagogic or hypnopompic hallucinations, sleep paralysis, periodic limb movements in sleep (PLMS), intense dreaming, and REM sleep behavior disorder (RBD) are frequently encountered [7]. According to the diagnostic criteria of the International Classification of Sleep Disorders, diagnosis of narcolepsy with cataplexy can be made in the presence of persisting EDS for at least 3 months, definite history of clear-cut cataplexy and specific findings in the multiple sleep latency test (MSLT) [mean sleep latency ≤8 min, ≥2 sleep onset rapid eye movement (SOREM) periods] [8]. If cataplexy is absent or atypical, narcolepsy without cataplexy is diagnosed [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassetti CL. Narcolepsy. Selective hypocretin (orexin) neuronal loss and multiple signalling deficiencies. Neurology. 2005;65:1152–3.

    PubMed  Google Scholar 

  2. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6:991–7.

    PubMed  CAS  Google Scholar 

  3. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27:469–74.

    PubMed  CAS  Google Scholar 

  4. Honda Y, Doi Y, Juji T, Satake M. Narcolepsy and HLA: positive DR2 as a prerequisite for the development of narcolepsy. Folia Psychiatr Neurol Jpn. 1984;38:360.

    Google Scholar 

  5. Mignot E, Lin X, Arrigoni J, et al. DQB1*0602 and DQA1*0102 (DQ1) are better markers than DR2 for narcolepsy in Caucasian and black Americans. Sleep. 1994;17:S60–7.

    PubMed  CAS  Google Scholar 

  6. Cvetkovic-Lopes V, Bayer L, Dorsaz S, Maret S, Pradervand S, Dauvilliers Y, et al. Elevated tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest. 2010;120:713–9.

    PubMed  CAS  Google Scholar 

  7. Dauvilliers Y, Arnulf I, Mignot E. Narcolepsy with cataplexy. Lancet. 2007;369:499–511.

    PubMed  Google Scholar 

  8. American Academy of Sleep Medicine. International classification of sleep disorders, 2nd edition: diagnostic and coding manual. Westchester, IL: American Academy of Sleep Medicine; 2005.

    Google Scholar 

  9. Bonduelle M, Degos C. Symptomatic narcolepsies: a critical study. Adv Sleep Res. 1974;3:313–32.

    Google Scholar 

  10. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63.

    PubMed  CAS  Google Scholar 

  11. Adamantidis A, de Lecea L. Physiological arousal: a role for hypothalamic systems. Cell Mol Life Sci. 2008;65:1475–88.

    PubMed  CAS  Google Scholar 

  12. Saper CB, Cano G, Scammell TE. Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol. 2005;493:92–8.

    PubMed  CAS  Google Scholar 

  13. Aldrich MS, Chervin RD, Malow BA. Value of the multiple sleep latency test (MSLT) for the diagnosis of narcolepsy. Sleep. 1997;20:620–9.

    PubMed  CAS  Google Scholar 

  14. Marti I, Valko PO, Khatami R, Bassetti CL, Baumann CR. Multiple sleep latency measures in narcolepsy and behaviourally induced insufficient sleep syndrome. Sleep Med. 2009;10:1146–50.

    PubMed  Google Scholar 

  15. Mignot E, Lin L, Finn L, Lopes C, Pluff K, Sundstrom ML, et al. Correlates of sleep-onset REM periods during the Multiple Sleep Latency Test in community adults. Brain. 2006;129:1609–23.

    PubMed  Google Scholar 

  16. Gélineau JB. De la narcolepsie. Gaz Hôp (Paris). 1880;53:626–8. 635–7.

    Google Scholar 

  17. Symonds CP. Narcolepsy as a symptom of encephalitis lethargica. Lancet. 1926;12:1214–5.

    Google Scholar 

  18. Von Economo C. Sleep as a problem of localization. J Nerv Ment Dis. 1930;71:249–59.

    Google Scholar 

  19. Von Economo C. Encephalitis lethargica: its sequelae and treatment. Oxford University Press: London; 1931.

    Google Scholar 

  20. Adie WJ. Idiopathic narcolepsy: a disease sui generis: with remarks on the mechanism of sleep. Brain. 1926;49:257–306.

    Google Scholar 

  21. Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50:S16–22.

    PubMed  CAS  Google Scholar 

  22. Guillain G, Alajouanine T. La somnolence dans la sclérose en plaques. Les episodes aigus ou subaigus de la sclérose en plaques pouvant simuler l’encéphalite léthargique. Ann Med. 1928;24:111–8.

    Google Scholar 

  23. Berg O, Hanley J. Narcolepsy in two cases of multiple sclerosis. Acta Neurol Scand. 1963;39:252–7.

    PubMed  CAS  Google Scholar 

  24. Ekbom K. Familial multiple sclerosis associated with narcolepsy. Arch Neurol. 1966;15:337–44.

    PubMed  CAS  Google Scholar 

  25. Schrader H, Gotlibson O, Skomedal G. Multiple sclerosis and narcolepsy/cataplexy in a monozygotic twin. Neurology. 1980;30:105–8.

    PubMed  CAS  Google Scholar 

  26. Younger DS, Pedley TA, Thorpy MJ. Multiple sclerosis and narcolepsy: possible similar genetic susceptibility. Neurology. 1991;41:447–8.

    PubMed  CAS  Google Scholar 

  27. Celius EG, Harbo HF, Egeland T, Vartdal F, Vandvik B, Spurkiand A. Sex and age at diagnosis are correlated with the HLA-DR2, DQ6 haplotype in multiple sclerosis. J Neurol Sci. 2000;178:132–5.

    PubMed  CAS  Google Scholar 

  28. Poirier G, Montplaisir J, Dumont M, et al. Clinical and sleep laboratory study of narcoleptic symptoms in multiple sclerosis. Neurology. 1987;37:693–5.

    PubMed  CAS  Google Scholar 

  29. Knudsen S, Jennum PJ, Korsholm K, Sheikh SP, Gammeltoft S, Frederiksen JL. Normal levels of cerebrospinal fluid hypocretin-1 and daytime sleepiness during attacks of relapsing-remitting multiple sclerosis and monosymptomatic optic neuritis. Mult Scler. 2008;14:734–8.

    PubMed  CAS  Google Scholar 

  30. Rao DG, Singhal BS. Secondary narcolepsy in a case of multiple sclerosis. J Assoc Physicians India. 1997;45:321–2.

    PubMed  CAS  Google Scholar 

  31. Iseki K, Mezaki T, Oka Y, et al. Hypersomnia in MS. Neurology. 2002;59:2006–7.

    PubMed  CAS  Google Scholar 

  32. Kato T, Kanbayashi T, Yamamoto K, Nakano T, Shimizu T, Hashimoto T, et al. Hypersomnia and low CSF hypocretin-1 (orexin-A) concentration in a patient with multiple sclerosis showing bilateral hypothalamic lesions. Intern Med. 2003;42:743–5.

    PubMed  Google Scholar 

  33. Oka Y, Kanbayashi T, Mezaki T, Iseki K, Matsubayashi J, Murakami G, et al. Low CSF hypocretin-1/orexin-A associated with hypersomnia secondary to hypothalamic lesion in a case of multiple sclerosis. J Neurol. 2004;251:885–6.

    PubMed  Google Scholar 

  34. Nozaki H, Shimohata T, Kanbayashi T, Sagawa Y, Katada S, Satoh M, et al. A patient with anti-­aquaporin 4 antibody who presented with recurrent hypersomnia, reduced orexin (hypocretin) level, and symmetrical hypothalamic lesions. Sleep Med. 2009;10:253–5.

    PubMed  Google Scholar 

  35. Kanbayashi T, Shimohata T, Nakashima I, Yaguchi H, Yabe I, Nishizawa M, et al. Symptomatic narcolepsy in patients with neuromyelitis optica and multiple sclerosis. New neurochemical and immunological implications. Arch Neurol. 2009;66:1563–6.

    PubMed  Google Scholar 

  36. Vetrugno R, Stecchi S, Plazzi G, Lodi R, D’Angelo R, Alessandria M, et al. Narcolepsy-like syndrome in multiple sclerosis. Sleep Med. 2009;10:389–91.

    PubMed  Google Scholar 

  37. Dauvilliers Y, Abril B, Mas E, Michel F, Tafti M. Normalization of hypocretin-1 in narcolepsy after intravenous immunoglobulin treatment. Neurology. 2009;73:1333–4.

    PubMed  CAS  Google Scholar 

  38. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364:2106–12.

    PubMed  CAS  Google Scholar 

  39. Pittock SJ, Lennon VA, Krecke K, Wingerchuk DM, Lucchinetti CF, Weinshenker BG. Brain abnormalities in neuromyelitis optica. Arch Neurol. 2006;63:390–6.

    PubMed  Google Scholar 

  40. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci. 2003;4:991–1001.

    PubMed  CAS  Google Scholar 

  41. Pittock SJ, Weinshenker BG, Lucchinetti CF, Wingerchuk DM, Corboy JR, Lennon VA. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol. 2006;63:964–8.

    PubMed  Google Scholar 

  42. Nozaki H, Katada S, Sato M, Tanaka K, Nishizawa M. A case with hypersomnia and paresthesia due to diffuse MS lesions from hypothalamus to spine. Rinsho Shinkeigaku. 2004;44:59.

    Google Scholar 

  43. Poppe AY, Lapierre Y, Melancon D, Lowden D, Wardell L, Fullerton LM, et al. Neuromyelitis optica with hypothalamic involvement. Mult Scler. 2005;11:617–21.

    PubMed  Google Scholar 

  44. Carlander B, Vincent T, Le Floch A, Pageot N, Camu W, Dauvilliers Y. Hypocretinergic dysfunction in neuromyelitis optica with coma-like episodes. J Neurol Neurosurg Psychiatry. 2008;79:333–4.

    PubMed  CAS  Google Scholar 

  45. Baba T, Nakashima I, Kanbayashi T, Konno M, Takahashi T, Fujihara K, et al. Narcolepsy as an initial manifestation of neuromyelitis optica with anti-aquaporin-4 antibody. J Neurol. 2009;256:287–8.

    PubMed  Google Scholar 

  46. Kanbayashi T, Goto A, Hishikawa Y, et al. Hypersomnia due to acute disseminated encephalomyelitis in a 5-year-old girl. Sleep Med. 2001;2:347–50.

    PubMed  Google Scholar 

  47. Kubota H, Kanbayashi T, Tanabe Y, Takanashi J, Kohno Y. A case of acute disseminated encephalomyelitis presenting hypersomnia with decreased hypocretin level in cerebrospinal fluid. J Child Neurol. 2002;17:537–9.

    PubMed  Google Scholar 

  48. Arii J, Kanyabashi T, Tanabe Y, Sawaishi S, Kimura A, Watanabe K, et al. CSF hypocretin-1 (orexin-A) levels in childhood narcolepsy and neurologic disorders. Neurology. 2004;63:2440–2.

    PubMed  CAS  Google Scholar 

  49. Gledhill RF, Bartel PR, Yoshida Y, Nishino S, Scammell TE. Narcolepsy caused by acute disseminated encephalomyelitis. Arch Neurol. 2004;61:758–60.

    PubMed  Google Scholar 

  50. Yoshikawa S, Suzuki S, Kanbayashi T, Nishino S, Tamai H. Hypersomnia and low cerebrospinal fluid hypocretin levels in acute disseminated encephalomyelitis. Pediatr Neurol. 2004;31:367–70.

    PubMed  Google Scholar 

  51. Schmidt-Degenhard M. Oneiric perception in intensively treated panplegic polyradiculitis patients. Nervenarzt. 1986;57:712–8.

    PubMed  CAS  Google Scholar 

  52. Wegener K, Tassan P, Josse M, Bolgert F. An oneiroid experience during severe acute polyradiculoneuritis. Ann Med Psychol. 1995;153:121–6.

    CAS  Google Scholar 

  53. Cochen V, Arnulf I, Demeret S, Neulat ML, Gourlet V, Drouot X, et al. Vivid dreams, hallucinations, psychosis and REM sleep in Guillain-Barre syndrome. Brain. 2005;128:2535–45.

    PubMed  CAS  Google Scholar 

  54. Hochman M, Kobetz S, Handwerker J. Inappropriate secretion of antidiuretic hormone associated with Guillain-Barré syndrome. Ann Neurol. 1982;11:322–3.

    PubMed  CAS  Google Scholar 

  55. Ripley B, Overeem S, Fujiki N, et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology. 2001;57:2253–8.

    PubMed  CAS  Google Scholar 

  56. Kanbayashi T, Ishiguro H, Aizawa R, et al. Hypocretin-1 (orexin-A) concentrations in cerebrospinal fluid are low in patients with Guillain-Barré syndrome. Psychiatry Clin Neurosci. 2002;56:273–4.

    PubMed  CAS  Google Scholar 

  57. Nishino S, Kanbayashi T, Fujiki N, et al. CSF hypocretin levels in Guillain-Barré syndrome and other inflam­matory neuropathies. Neurology. 2003;61:823–5.

    PubMed  CAS  Google Scholar 

  58. Baumann CR, Bassetti CR. CSF hypocretin levels in Guillain-Barré syndrome and other inflammatory neuropathies. Neurology. 2004;62:2337.

    PubMed  Google Scholar 

  59. Overeem S, Geleijns K, Garssen MP, Jacobs BC, van Doorn PA, Lammers GJ. Screening for anti-­ganglioside antibodies in hypocretin-deficient human narcolepsy. Neurosci Lett. 2003;341:13–6.

    PubMed  CAS  Google Scholar 

  60. Voltz R, Gultekin SH, Rosenfeld MR, et al. A serologic marker of paraneoplastic limbic and brainstem encephalitis in patients with testicular cancer. N Engl J Med. 1999;340:1788–95.

    PubMed  CAS  Google Scholar 

  61. Rosenfeld MR, Eichen JG, Wade DF, Posner JB, Dalmau J. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Ann Neurol. 2001;50:339–48.

    PubMed  CAS  Google Scholar 

  62. Dalmau J, Graus F, Villarejo A, Posner JB, Blumenthal D, Thiessen B, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain. 2004;127:1831–44.

    PubMed  Google Scholar 

  63. Rojas-Marcos I, Graus F, Sanz G, Robledo A, Diaz-Espejo C. Hypersomnia as presenting symptom of anti-Ma2-associated encephalitis: case study. Neuro Oncol. 2007;9:75–7.

    PubMed  Google Scholar 

  64. Overeem S, Dalmau J, Bataller L, Nishino S, Mignot E, Verschuuren J, et al. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis. Neurology. 2004;62:138–40.

    PubMed  CAS  Google Scholar 

  65. Landolfi JC, Nadkarni M. Paraneoplastic limbic encephalitis and possible narcolepsy in a patient with testicular cancer: case study. Neuro Oncol. 2003;5:214–6.

    PubMed  Google Scholar 

  66. Compta Y, Iranzo A, Santamaría J, Casamitjana R, Graus F. REM sleep behavior disorder and narcoleptic features in anti-Ma2-associated encephalitis. Sleep. 2007;30:767–9.

    PubMed  Google Scholar 

  67. Mathis J, Hess CW, Bassetti C. Isolated mediotegmental lesion causing narcolepsy and rapid eye movement sleep behaviour disorder: a case evidencing a common pathway in narcolepsy and rapid eye movement sleep behaviour disorder. J Neurol Neurosurg Psychiatry. 2007;78:427–9.

    PubMed  CAS  Google Scholar 

  68. Iranzo A, Graus F, Clover L, Morera J, Bruna J, Vilar C, et al. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann Neurol. 2006;59:178–82.

    PubMed  Google Scholar 

  69. Lin FC, Liu CK, Hsu CY. Rapid-eye-movement sleep behavior disorder secondary to acute aseptic limbic encephalitis. J Neurol. 2009;256:1174–6.

    PubMed  Google Scholar 

  70. Hsieh CF, Lai CL, Liu CK, Lan SH, Hsieh SW, Hsu CY. Narcolepsy and Behçet’s disease: report of a Chinese-Taiwanese case. Sleep Med. 2010;11:426–8.

    Google Scholar 

  71. Baumann CR, Bassetti CL, Hersberger M, Jung HH. Excessive daytime sleepiness in Behçet’s disease with diencephalic lesions and hypocretin dysfunction. Eur Neurol. 2010;63:190.

    PubMed  Google Scholar 

  72. Serdaroglu P. Behçet’s disease and the nervous system. J Neurol. 1998;245:197–205.

    PubMed  CAS  Google Scholar 

  73. Watson NF, Doherty MJ, Zunt JR. Secondary narcolepsy following neurocysticercosis infection. J Clin Sleep Med. 2005;1:41–2.

    PubMed  Google Scholar 

  74. Maia LF, Marta M, Lopes V, Rocha N, Lopes C, Martins-da-Silva A, et al. Hypersomnia in Whipple disease. Case report. Arq Neuropsiquiatr. 2006;64:865–8.

    PubMed  Google Scholar 

  75. Vorderholzer U, Riemann D, Gann H, et al. Transient total sleep loss in cerebral Whipple’s disease: a longitudinal study. J Sleep Res. 2002;11:321–9.

    Google Scholar 

  76. Rubinstein I, Gray TA, Moldofsky H, Hoffstein V. Neurosarcoidosis associated with hypersomnolence treated with corticosteroids and brain irradiation. Chest. 1988;94:205–6.

    PubMed  CAS  Google Scholar 

  77. Servan J, Marchand F, Garma L, Seilhean D, Hauw J, Delattre J. Narcolepsy disclosing neurosarcoidosis. Rev Neurol (Paris). 1995;151:281–3.

    CAS  Google Scholar 

  78. Malik S, Boeve BF, Krahn LE, Silber MH. Narcolepsy associated with other central nervous system disorders. Neurology. 2001;57:539–41.

    PubMed  CAS  Google Scholar 

  79. Afshar K, Engelfried K, Sharma OP. Sarcoidosis: a rare cause of Kleine-Levine-Critchley syndrome. Sarcoidosis Vasc Diffuse Lung Dis. 2008;25:60–3.

    PubMed  CAS  Google Scholar 

  80. Nakazato Y, Kondo S, Okhuma A, Ito Y, Tamura N, Araki N. Neurosarcoidosis presenting as spontaneously remitting hypersomnia. J Neurol. 2009;256:1929–31.

    PubMed  Google Scholar 

  81. Aran A, Lin L, Nevsimalova S, Plazzi G, Hong SC, Weiner K, et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep. 2009;32:979–83.

    PubMed  Google Scholar 

  82. Aldrich MS, Naylor MW. Narcolepsy associated with lesions of the diencephalon. Neurology. 1989;39:1505–8.

    PubMed  CAS  Google Scholar 

  83. Marcus C, Trescher W, Halbower A, Lutz J. Secondary narcolepsy in children with brain tumors. Sleep. 2002;25:435–9.

    PubMed  Google Scholar 

  84. Rosen G, Bendel A, Neglia J, Moertel C, Mahowald M. Sleep in children with neoplasms of the central nervous system: case review of 14 children. Pediatrics. 2003;112:e46–54.

    PubMed  Google Scholar 

  85. D’Cruz OF, Vaughn BV, Gold SH, et al. Symptomatic cataplexy in pontomedullary lesions. Neurology. 1994;44:2189–91.

    PubMed  Google Scholar 

  86. Ma TK, Ang LC, Mamelak M, Kish SJ, Young B, Lewis AJ. Narcolepsy secondary to fourth ventricular subependymoma. Can J Neurol Sci. 1996;23:59–62.

    PubMed  CAS  Google Scholar 

  87. Müller HL, Müller-Stöver S, Gebhardt U, Kolb R, Sörensen N, Handwerker G. Secondary narcolepsy may be a causative factor of increased daytime sleepiness in obese childhood craniopharyngioma patients. J Pediatr Endocrinol Metab. 2006;S19:423–9.

    Google Scholar 

  88. Dauvilliers Y, Abril B, Charif M, Quittet P, Bauchet L, Carlander B, et al. Reversal of symptomatic tumoral narcolepsy, with normalization of CSF hypocretin level. Neurology. 2007;69:1300–1.

    PubMed  CAS  Google Scholar 

  89. Onofrj M, Curatola L, Ferracci F, Fulgente T. Narcolepsy associated with primary temporal lobe B-cells lymphoma in a HLA DR2 negative subject. J Neurol Neurosurg Psychiatry. 1992;55:852–3.

    PubMed  CAS  Google Scholar 

  90. Clavelou P, Tournilhac M, Vidal C, Georget A, Picard L, Merienne L. Narcolepsy associated with arteriovenous malformation on the diencephalon. Sleep. 1995;18:202–5.

    PubMed  CAS  Google Scholar 

  91. Ogata N, Yonekawa Y. Recurrent sleep attacks associated with a craniopharyngioma. J Clin Neurosci. 1997;4:499–500.

    Google Scholar 

  92. Nokura K, Kanbayashi T, Ozeki T, Koga H, Zettsu T, Yamamoto H, et al. Hypersomnia, asterixis and ­cataplexy in association with orexin A-reduced ­hypothalamic tumor. J Neurol. 2004;251:1534–5.

    PubMed  Google Scholar 

  93. Snow A, Gozal E, Malhotra A, Tiosano D, Perlman R, Vega C, et al. Severe hypersomnolence after pituitary/hypothalamic surgery in adolescents: clinical characteristics and potential mechanisms. Pediatrics. 2002;110:e74.

    PubMed  Google Scholar 

  94. Dempsey O, McGeoch P, de Silva R, Douglas N. Acquired narcolepsy in an acromegalic patient who underwent pituitary irradiation. Neurology. 2003;61:537–40.

    PubMed  Google Scholar 

  95. Schwartz WJ, Stakes JW, Hobson JA. Transient cataplexy after removal of a craniopharyngioma. Neurology. 1984;34:1372–5.

    PubMed  CAS  Google Scholar 

  96. Arii J, Kanbayashi T, Tanabe Y, Ono J, Nishino S, Kohno Y. A hypersomnolent girl with decreased CSF hypocretin level after removal of a hypothalamic tumor. Neurology. 2001;56:1775–6.

    PubMed  CAS  Google Scholar 

  97. Krahn LE, Boeve BF, Oliver L, Silber MH. Hypocretin (orexin) and melatonin values in a narcoleptic-like sleep disorder after pinealectomy. Sleep Med. 2002;3:521–32.

    PubMed  Google Scholar 

  98. Tachibana N, Taniike M, Okinaga T, Ripley B, Mignot E, Nishino S. Hypersomnolence and increased REM sleep with low cerebrospinal fluid hypocretin level in a patient after removal of craniopharyngioma. Sleep Med. 2005;6:567–9.

    PubMed  Google Scholar 

  99. Scammell T, Nishino S, Mignot E, Saper C. Narcolepsy and low CSF orexin (hypocretin) concentration after a diencephalic stroke. Neurology. 2001;56:1751–3.

    PubMed  CAS  Google Scholar 

  100. Nevsimalova S, Vankova J, Stepanova I, Seemanova E, Mignot E, Nishino S. Hypocretin deficiency in Prader-Willi syndrome. Eur J Neurol. 2005;12:70–2.

    PubMed  CAS  Google Scholar 

  101. Swaab DF. Prader-Willi syndrome and the hypothalamus. Acta Pediatr Scand. 1997;423:50–4.

    CAS  Google Scholar 

  102. Nevsimalova S. Narcolepsy in childhood. Sleep Med Rev. 2009;13:169–80.

    PubMed  Google Scholar 

  103. Vgontzas AN, Bixler EO, Kales A, Centurione A, Rogan PK, Mascari M, et al. Daytime sleepiness and REM abnormalities in Prader-Willi syndrome: evidence of generalized hypoarousal. Int J Neurosci. 1996;87:127–39.

    PubMed  CAS  Google Scholar 

  104. Richdale AL, Cotton S, Hibbit K. Sleep and ­behaviour disturbance in Prader-Willi syndrome: a questionnaire study. J Intellect Disabil Res. 1999;43:380–92.

    PubMed  Google Scholar 

  105. Manni R, Politini L, Nobili L, Ferrillo F, Livieri C, Veneselli E, et al. Hypersomnia in the Prader-Willi syndrome: clinical-electrophysiological features and underlying factors. Clin Neurophysiol. 2001;112:800–5.

    PubMed  CAS  Google Scholar 

  106. Wagner MH, Berry RB. An obese female with Prader-Willi syndrome and daytime sleepiness. J Clin Sleep Med. 2007;3:645–7.

    PubMed  Google Scholar 

  107. Camfferman D, McEnvoy RD, O’Donoghue F, Lushington K. Prader Willi syndrome and excessive daytime sleepiness. Sleep Med Rev. 2008;12:65–75.

    PubMed  Google Scholar 

  108. Helbing-Zwanenburg B, Kamphuisen HA, Mourtazaev MS. The origin of excessive daytime sleepiness in the Prader-Willi syndrome. J Intellect Disabil Res. 1993;37:533–41.

    PubMed  Google Scholar 

  109. Cassidy SB, McKillop JA, Morgan WJ. Sleep disorders in the Prader-Willi syndrome. 1989 David W Smith Workshop on Malformations and Morphogenesis, Madrid, Spain. Proc Greenwood Gent Centre. 1990;9:74–5.

    Google Scholar 

  110. Clift S, Dahlitz M, Parkes JD. Sleep apnoea in the Prader-Willi syndrome. J Sleep Res. 1994;3:121–6.

    PubMed  Google Scholar 

  111. Tobias ES, Tolmie JL, Stephenson JBP. Cataplexy in the Prader-Willi syndrome. Arch Dis Child. 2002;87:170–1.

    PubMed  CAS  Google Scholar 

  112. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59:1553–62.

    PubMed  Google Scholar 

  113. Dauvilliers Y, Baumann CR, Carlander B, et al. CSF hypocretin-1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. J Neurol Neurosurg Psychiatry. 2003;74:1667–73.

    PubMed  CAS  Google Scholar 

  114. Fronczek R, Lammers GJ, Balesar R, Unmehopa UA, Swaab DF. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader-Willi syndrome. J Clin Endocrinol Metab. 2005;90:5466–70.

    PubMed  CAS  Google Scholar 

  115. Parkes JD. Genetic factors in human sleep disorders with special reference to Norrie disease, Prader-Willi syndrome and Moebius syndrome. J Sleep Res. 1999;8:S14–22.

    Google Scholar 

  116. Swaab DF, Roozendaal B, Ravid R, Velis DN, Gooren L, Williams RS. Suprachiasmatic nucleus in aging, Alzheimer’s disease, transsexuality and Prader-Willi syndrome. Prog Brain Res. 1987;72:301–10.

    PubMed  CAS  Google Scholar 

  117. Sévin M, Lesca G, Baumann N, Millat G, Lyon-Caen O, Vanier MT, et al. The adult form of Niemann-Pick disease type C. Brain. 2007;130:120–33.

    PubMed  Google Scholar 

  118. Luan Z, Saito Y, Miyata H, Ohama E, Ninomiya H, Ohno K. Brainstem neuropathology in a mouse model of Niemann-Pick disease type C. J Neurol Sci. 2008;268:108–16.

    PubMed  CAS  Google Scholar 

  119. Vankova J, Stepanova I, Jech R, Elleder M, Ling L, Mignot E, et al. Sleep disturbances and hypocretin deficiency in Niemann-Pick disease type C. Sleep. 2003;26:427–30.

    PubMed  Google Scholar 

  120. Kanbayashi T, Abe M, Fujimoto S, Miyachi T, Takahashi T, Yano T, et al. Hypocretin deficiency in Niemann-Pick type C with cataplexy. Neuropediatrics. 2003;34:52–3.

    PubMed  CAS  Google Scholar 

  121. Oyama K, Takahashi T, Shoji Y, Oyamada M, Noguchi A, Tamura H, et al. Niemann-Pick disease type C: cataplexy and hypocretin in cerebrospinal fluid. Tohoku J Exp Med. 2006;209:263–7.

    PubMed  Google Scholar 

  122. Kandt RS, Emerson RG, Singer HS, Valle DL, Moser HW. Cataplexy in variant forms in Niemann-Pick C disease. Ann Neurol. 1982;12:284–8.

    PubMed  CAS  Google Scholar 

  123. Denoix C, Rodriguez-Lafrasse C, Vanier MT, Navelet Y, Landrieu P. Cataplexie révélatrice d’une forme atypique de la maladie de Niemann-Pick type C. Arch Fr Pediatr. 1991;48:31–4.

    PubMed  CAS  Google Scholar 

  124. Challamel MJ, Mazzola ME, Nevsimalova S, Cannard C, Louis J, Revol M. Narcolepsy in children. Sleep. 1994;17:S17–20.

    PubMed  CAS  Google Scholar 

  125. Boor R, Reitter B. Kataplexie bei Morbus Niemann-Pick Typ C. Klin Pediatr. 1997;209:88–90.

    CAS  Google Scholar 

  126. Smit LS, Lammers GJ, Catsman-Berrevoets CE. Cataplexy leading to the diagnosis of Niemann-Pick disease type C. Pediatr Neurol. 2006;35:82–4.

    PubMed  Google Scholar 

  127. Sudarshan A, Goldie WD. The spectrum of congenital facial diplegia (Moebius syndrome). Pediatr Neurol. 1985;1:180–4.

    PubMed  CAS  Google Scholar 

  128. Phemister JC, Small JM. Hypersomnia in dystrophia myotonica. J Neurol Neurosurg Psychiatry. 1961;24:173–5.

    PubMed  CAS  Google Scholar 

  129. Manni R, Zucca C, Martinetti M, Ottolini A, Lanzi G, Tartara A. Hypersomnia in dystrophia myotonica: a neuropsychological and immunogenetic study. Acta Neurol Scand. 1991;84:498–502.

    PubMed  CAS  Google Scholar 

  130. Park J, Radtke R. Hypersomnolence in myotonic dystrophy: demonstration of sleep onset REM sleep. J Neurol Neurosurg Psychiatry. 1995;58:512–3.

    PubMed  CAS  Google Scholar 

  131. Rubinsztein JS, Rubinsztein DC, Goodburn S, Holland AJ. Apathy and hypersomnia are common features of myotonic dystrophy. J Neurol Neurosurg Psychiatry. 1998;64:510–5.

    PubMed  CAS  Google Scholar 

  132. Giubilei F, Antonini G, Bastianello S, Morino S, Paolillo A, Fiorelli M, et al. Excessive daytime sleepiness in myotonic dystrophy. J Neurol Sci. 1999;164:60–3.

    PubMed  CAS  Google Scholar 

  133. Phillips MF, Steer HM, Soldan JR, Wiles CM, Harper PS. Daytime somnolence in myotonic ­dystrophy. J Neurol. 1999;246:275–82.

    PubMed  CAS  Google Scholar 

  134. Khandelwal D, Bhatia M, Tripathi M, Sahota P, Jain S. Excessive daytime sleepiness: an unusual presentation of myotonic dystrophy. Sleep Med. 2002;3:431–2.

    PubMed  CAS  Google Scholar 

  135. Laberge L, Bégin P, Montplaisir J, Mathieu J. Sleep complaints in patients with myotonic dystrophy. J Sleep Res. 2004;13:95–100.

    PubMed  Google Scholar 

  136. Ciafaloni E, Mignot E, Sansone V, Hilbert JE, Lin L, Lin X, et al. The hypocretin neurotransmission system in myotonic dystrophy type 1. Neurology. 2008;70:226–30.

    PubMed  CAS  Google Scholar 

  137. Laberge L, Bégin P, Dauvilliers Y, Beaudry M, Laforte M, Jean S, et al. A polysomnographic study of daytime sleepiness in myotonic dystrophy type 1. J Neurol Neurosurg Psychiatry. 2009;80:642–6.

    PubMed  CAS  Google Scholar 

  138. Gibbs JW, Ciafaloni E, Radtke RA. Excessive daytime somnolence and increased rapid eye movement pressure in myotonic dystrophy. Sleep. 2002;25:672–5.

    Google Scholar 

  139. Martinez-Rodriguez JE, Lin L, Iranzo A, Genis D, Marti MJ, Santamaria J, et al. Decreased hypocretin-1 (orexin-A) levels in the cerebrospinal fluid of patients with myotonic dystrophy and excessive daytime sleepiness. Sleep. 2003;26:287–90.

    PubMed  Google Scholar 

  140. Van Hilten JJ, Kerkhof GA, van Dijk JG, Dunnewold R, Wintzen AR. Disruption of sleep-wake rhythmicity and daytime sleepiness in myotonic dystrophy. J Neurol Sci. 1993;114:68–75.

    PubMed  Google Scholar 

  141. Ono S, Takahashi K, Jinnai K, et al. Loss of serotonin-containing neurons in the raphe of patients with myotonic dystrophy: a quantitative immunohistochemical study and relation to hypersomnia. Neurology. 1998;50:535–8.

    PubMed  CAS  Google Scholar 

  142. Frucht S, Rogers JD, Greene PE, Gordon MF, Fahn S. Falling asleep at the wheel: motor vehicle mishaps in persons taking pramipexole and ropinirole. Neurology. 1999;52:1908–10.

    PubMed  CAS  Google Scholar 

  143. Ferreira JJ, Galitzky M, Montastruc JL, Rascol O. Sleep attacks and Parkinson’s disease treatment. Lancet. 2000;355:1333–4.

    PubMed  CAS  Google Scholar 

  144. Arnulf I, Bonnet AM, Damier P, et al. Hallucinations, REM sleep, and Parkinson’s disease: a medical hypothesis. Neurology. 2000;55:281–8.

    PubMed  CAS  Google Scholar 

  145. Arnulf I, Konofal E, Merino-Andreu M, et al. Parkinson’s disease and sleepiness: an integral part of PD. Neurology. 2002;58:1019–24.

    PubMed  CAS  Google Scholar 

  146. Hobson DE, Lang AE, Martin WR, Razmy A, Rivest J, Fleming J. Excessive daytime sleepiness and sudden-onset sleep in Parkinson disease: a survey by the Canadian Movement Disorders Group. JAMA. 2002;287:455–63.

    PubMed  Google Scholar 

  147. Rye DB, Johnston LH, Watts RL, Bliwise DL. Juvenile Parkinson’s disease with REM sleep behaviour disorder, sleepiness, and daytime REM onset. Neurology. 1999;53:1868–70.

    PubMed  CAS  Google Scholar 

  148. Onofrj M, Luciano AL, Iacono D, Thomas A, Stocchi F, Papola F, et al. HLA typing does not predict REM sleep behaviour disorder and hallucinations in Parkinson’s disease. Mov Disord. 2003;18:337–40.

    PubMed  Google Scholar 

  149. Autret A, Lucas B, Henry-Lebras F, et al. Symptomatic narcolepsies. Sleep. 1994;17:S21–4.

    PubMed  CAS  Google Scholar 

  150. Overeem S, van Hilten JJ, Ripley B, Mignot E, Nishino S, Lammers GJ. Normal hypocretin-1 levels in Parkinson’s disease patients with excessive daytime sleepiness. Neurology. 2002;58:498–9.

    PubMed  CAS  Google Scholar 

  151. Baumann C, Ferini-Strambi L, Waldvogel D, Werth E, Bassetti CL. Parkinson’s disease with excessive daytime sleepiness – a narcolepsy-like disorder? J Neurol. 2005;252:139–45.

    PubMed  Google Scholar 

  152. Yasui K, Inoue Y, Kanbayashi T, Nomura T, Kusumi M, Nakashima K. CSF orexin levels in Parkinson’s disease, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal degeneration. J Neurol Sci. 2006;250:120–3.

    PubMed  CAS  Google Scholar 

  153. Maeda T, Nagata K, Kondo H, Kanbayashi T. Parkinson’s disease comorbid with narcolepsy presenting low CSF hypocretin/orexin level. Sleep Med. 2006;7:662.

    PubMed  Google Scholar 

  154. Drouot X, Moutereau S, Nguyen JP, et al. Low levels of ventricular CSF orexin/hypocretin in advanced PD. Neurology. 2003;61:540–3.

    PubMed  CAS  Google Scholar 

  155. Fronczek R, Overeem S, Lee SY, et al. Hypocretin (orexin) loss in Parkinson’s disease. Brain. 2007;130:1577–85.

    PubMed  Google Scholar 

  156. Thannickal TC, Lai YY, Siegel JM. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain. 2007;130:1586–95.

    PubMed  Google Scholar 

  157. Van Someren EJ, Hagebeuk EE, Lijzenga C, Scheltens P, de Rooij SE, Jonker C, et al. Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol Psychiatry. 1996;40:259–70.

    PubMed  Google Scholar 

  158. Ancoli-Israel S, Klauber MR, Jones DW, Kripke DF, Martin J, Mason W, et al. Variations in circadian rhythms of activity, sleep, and light exposure related to dementia in nursing-home patients. Sleep. 1997;20:18–23.

    PubMed  CAS  Google Scholar 

  159. Yesavage JA, Friedman L, Ancoli-Israel S, et al. Development of diagnostic criteria for defining sleep disturbances in Alzheimer’s disease. J Geriatr Psychiatry Neurol. 2003;16:131–9.

    PubMed  Google Scholar 

  160. Harper DG, Stopa EG, McKee AC, Satlin A, Fish D, Volicer L. Dementia severity and Lewy bodies affect circadian rhythms in Alzheimer disease. Neurobiol Aging. 2004;25:771–81.

    PubMed  CAS  Google Scholar 

  161. Ebrahim IO, Semra YK, De Lacy S, et al. CSF hypocretin (orexin) in neurological and psychiatric conditions. J Sleep Res. 2003;12:83–4.

    PubMed  CAS  Google Scholar 

  162. Baumann CR, Dauvilliers Y, Mignot E, Bassetti CL. Normal CSF hypocretin-1 (orexin A) levels in dementia with Lewy bodies associated with excessive daytime sleepiness. Eur Neurol. 2004;52:73–6.

    PubMed  CAS  Google Scholar 

  163. Friedman LF, Zeitzer JM, Lin L, et al. In Alzheimer disease, increased wake fragmentation found in those with lower hypocretin-1. Neurology. 2007;68:793–4.

    PubMed  CAS  Google Scholar 

  164. Desarnaud F, Murillo-Rodriguez E, Lin L, et al. The diurnal rhythm of hypocretin in young and old F344 rats. Sleep. 2004;27:851–6.

    PubMed  Google Scholar 

  165. Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L, et al. Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain. 2008;131:1609–17.

    PubMed  Google Scholar 

  166. Deboer T, Overeem S, Visser NAH, Duindam H, Frölich M, Lammers GJ, et al. Convergence of circadian and sleep regulatory mechanisms on hypocretin-1. Neuroscience. 2004;129:727–32.

    PubMed  CAS  Google Scholar 

  167. Zhang S, Zeitzer JM, Yoshida Y, Wisor JP, Nishino S, Edgar DM, et al. Lesions of the suprachiasmatic nucleus eliminate the daily rhythm of hypocretin-1 release. Sleep. 2004;27:619–27.

    PubMed  Google Scholar 

  168. Marston OJ, Williams RH, Canal MM, Samuels RE, Upton N, Piggins HD. Circadian and dark-pulse activation of orexin/hypocretin neurons. Molecular Brain. 2008;1:1–16.

    Google Scholar 

  169. Arnulf I, Merino-Andreu M, Bloch F, Konofal E, Vidailhet M, Cochen V, et al. REM sleep behaviour disorder and REM sleep without atonia in patients with progressive supranuclear palsy. Sleep. 2005;28:349–54.

    PubMed  Google Scholar 

  170. Ghorayeb I, Yekhlef F, Chrysostome V, Balestre E, Bioulac B, Tison F. Sleep disorders and their determinants in multiple system atrophy. J Neurol Neurosurg Psychiatry. 2002;72:798–800.

    PubMed  CAS  Google Scholar 

  171. Abdo WF, Bloem BR, Kremer HP, Lammers GJ, Verbeek MM, Overeem S. CSF hypocretin-1 levels are normal in multiple-system atrophy. Parkinsonism Relat Disord. 2008;14:342–4.

    PubMed  CAS  Google Scholar 

  172. Martinez-Rodriguez JE, Seppi K, Cardozo A, Iranzo A, Stampfer-Kountchev M, Wenning G, et al. Cerebrospinal fluid hypocretin-1 levels in multiple system atrophy. Mov Disord. 2007;22:1822–4.

    PubMed  Google Scholar 

  173. Benarroch EE, Schmeichel AM, Sandroni P, Low PA, Parisi JE. Involvement of hypocretin neurons in multiple system atrophy. Acta Neuropathol. 2007;113:75–80.

    PubMed  CAS  Google Scholar 

  174. Gerashchenko D, Murillo-Rodriguez E, Lin L, et al. Relationship between CSF hypocretin levels and hypocretin neuronal loss. Exp Neurol. 2003;184:1010–6.

    PubMed  CAS  Google Scholar 

  175. Starr A. A disorder of rapid eye movements in Huntington’s chorea. Brain. 1967;90:545–64.

    PubMed  CAS  Google Scholar 

  176. Wiegand M, Moller AA, Lauer CJ, Stolz S, Schreiber W, Dose M, et al. Nocturnal sleep in Huntington’s disease. J Neurol. 1991;238:203–8.

    PubMed  CAS  Google Scholar 

  177. Taylor N, Bramble D. Sleep disturbance and Huntington’s disease. Br J Psychiatry. 1997;171:393.

    PubMed  CAS  Google Scholar 

  178. Arnulf I, Nielsen J, Lohmann E, Schieffer J, Wild E, Jennum P, et al. Rapid eye movement sleep disturbances in Huntington Disease. Arch Neurol. 2008;65:482–8.

    PubMed  Google Scholar 

  179. Kremer HP, Roos RA, Dingjan G, Marani E, Bots GT. Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol. 1990;49:371–82.

    PubMed  CAS  Google Scholar 

  180. Kremer HP, Roos RA, Dingjan GM, Bots GT, Bruyn GW, Hofman MA. The hypothalamic lateral tuberal nucleus and the characteristics of neuronal loss in Huntington’s disease. Neurosci Lett. 1991;132:101–4.

    PubMed  CAS  Google Scholar 

  181. Petersen A, Gil J, Maat-Schieman ML, et al. Orexin loss in Huntington’s disease. Hum Mol Genet. 2005;14:39–47.

    PubMed  CAS  Google Scholar 

  182. Aziz NA, Swaab DF, Pijl J, Roos RA. Hypothalamic dysfunction and neuroendocrine and metabolic alterations in Huntington’s disease: clinical consequences and therapeutic implications. Rev Neurosci. 2007;18:223–51.

    PubMed  CAS  Google Scholar 

  183. Gaus SE, Lin L, Mignot E. CSF hypocretin levels are normal in Huntington’s disease patients. Sleep. 2005;28:1607–8.

    PubMed  Google Scholar 

  184. Meier A, Mollenhauer B, Cohrs S, et al. Normal hypocretin-1 (orexin-A) levels in the cerebrospinal fluid of patients with Huntington’s disease. Brain Res. 2005;1063:201–3.

    PubMed  CAS  Google Scholar 

  185. Björkqvist M, Petersen A, Nielsen J, et al. Cerebrospinal fluid levels of orexin-A are not a clinically useful biomarker for Huntington disease. Clin Genet. 2006;70:78–9.

    PubMed  Google Scholar 

  186. Baumann CR, Hersberger M, Bassetti CL. Hypocretin-1 (orexin A) levels are normal in Huntington’s disease. J Neurol. 2006;253:1232–3.

    PubMed  Google Scholar 

  187. Peyron C, Tighe DK, van Den Pool AN, de Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18:9996–10015.

    PubMed  CAS  Google Scholar 

  188. Van Rooij FG, Schelhaas HJ, Lammers GJ, Verbeek MM, Overeem S. CSF hypocretin-1 levels are normal in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10:487–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp O. Valko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Valko, P.O., Poryazova, R. (2011). Secondary Narcolepsy. In: Baumann, C., Bassetti, C., Scammell, T. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8390-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8390-9_30

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8389-3

  • Online ISBN: 978-1-4419-8390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics