Advertisement

Narcolepsy pp 253-260 | Cite as

Orexin/Hypocretin, Drug Addiction, and Narcolepsy

Chapter

Abstract

The hypothalamic neuropeptide orexin (hypocretin) influences a range of behaviors ranging from feeding to sleep and arousal. While genetic studies in rodents first demonstrated a role of orexin in narcolepsy with cataplexy, more recent work has brought attention to the role of orexin in drug addiction. Orexin influences many aspects of drug addiction, including drug dependence, reward, and reinstatement. Data suggest that orexin acts through its receptors to influence the mesocorticolimbic ­dopamine pathways that are known to underlie responses to drugs of abuse and the development of addiction. Importantly, orexin may also influence positive and negative (stress) states that can in turn influence addiction. The orexin neurons project broadly and the receptors are widely expressed, making it challenging to determine the circuits that are central to these effects. It may be that overlapping or ­distinct circuits are mediating orexin’s influence on reward/addiction or arousal/narcolepsy.

Keywords

Orexin Hypocretin Dopamine Ventral tegmental area Abuse Addition Conditioned place preference 

References

  1. 1.
    Broberger C, De Lecea L, Sutcliffe JG, Hokfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol. 1998;402(4):460–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.PubMedCrossRefGoogle Scholar
  3. 3.
    van den Pol AN, Geo XB, Obrietan K, Kilduff TS, Belousov AB. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neursci. 1998;18(19):7962–71.Google Scholar
  4. 4.
    Koob GF, Sanna PP, Bloom FE. Neuroscience of addiction. Neuron. 1998;21(3):467–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Mondal MS, Nakazato M, Date Y, Murakami N, Yanagisawa M, Matsukura S. Widespread distribution of orexin in rat brain and its regulation upon fasting. Biochem Biophys Res Commun. 1999;256(3):495–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999;827(1–2):243–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Baldo BA, Daniel RA, Berridge CW, Kelley AE. Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J Comp Neurol. 2003;464(2):220–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Fadel J, Deutch AY. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111(2):379–87.PubMedCrossRefGoogle Scholar
  9. 9.
    Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.PubMedGoogle Scholar
  10. 10.
    Nakamura T, Uramura K, Nambu T, et al. Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res. 2000;873(1):181–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Balcita-Pedicino JJ, Sesack SR. Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J Comp Neurol. 2007;503(5):668–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci. 2003;23(1):7–11.PubMedGoogle Scholar
  13. 13.
    Vittoz N, Schmeichel B, Berridge C. Hypocretin/orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. Eur J Neurosci. 2008;28(8):1629–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Vittoz NM, Berridge CW. Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology. 2006;31(2):384–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Narita M, Nagumo Y, Hashimoto S, et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci. 2006;26(2):398–495.PubMedCrossRefGoogle Scholar
  16. 16.
    Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006;49(4):589–601.PubMedCrossRefGoogle Scholar
  17. 17.
    Xia J, Chen X, Song C, Ye J, Yu Z, Hu Z. Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypocretin-1/orexin A through the inhibition of potassium currents. J Neurosci Res. 2005;82(5):729–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Martin G, Fabre V, Siggins GR, De Lecea L. Interaction of the hypocretins with neurotransmitters in the nucleus accumbens. Regul Pept. 2002;104(1–3):111–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Mukai K, Kim J, Nakajima K, Oomura Y, Wayner MJ, Sasaki K. Electrophysiological effects of orexin/hypocretin on nucleus accumbens shell neurons in rats: an in vitro study. Peptides. 2009;30(8):1487–96.PubMedCrossRefGoogle Scholar
  20. 20.
    Estabrooke IV, McCarthy MT, Ko E, et al. Fos expression in orexin neurons varies with behavioral state. J Neurosci. 2001;21(5):1656–62.PubMedGoogle Scholar
  21. 21.
    Zhang GC, Mao LM, Liu XY, Wang JQ. Long-lasting up-regulation of orexin receptor type 2 protein levels in the rat nucleus accumbens after chronic cocaine administration. J Neurochem. 2007;103(1):400–7.PubMedGoogle Scholar
  22. 22.
    Zhou Y, Cui CL, Schlussman SD, et al. Effects of cocaine place conditioning, chronic escalating-dose “binge” pattern cocaine administration and acute withdrawal on orexin/hypocretin and preprodynorphin gene expressions in lateral hypothalamus of Fischer and Sprague-Dawley rats. Neuroscience. 2008;153(4):1225–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhou Y, Bendor J, Hofmann L, Randesi M, Ho A, Kreek MJ. Mu opioid receptor and orexin/hypocretin mRNA levels in the lateral hypothalamus and striatum are enhanced by morphine withdrawal. J Endocrinol. 2006;191(1):137–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Kane JK, Parker SL, Matta SG, Fu Y, Sharp BM, Li MD. Nicotine up-regulates expression of orexin and its receptors in rat brain. Endocrinology. 2000;141(10):3623–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Morshedi MM, Meredith GE. Repeated amphetamine administration induces Fos in prefrontal cortical neurons that project to the lateral hypothalamus but not the nucleus accumbens or basolateral amygdala. Psychopharmacology. 2008;197(2):179–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Georgescu D, Zachariou V, Barrot M, et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci. 2003;23(8):3106–11.PubMedGoogle Scholar
  27. 27.
    Sharf R, Sarhan M, DiLeone RJ. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol Psychiatry. 2008;64(3):175–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Robinson TE, Becker JB, Priesty SK. Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res. 1982;253:231–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Sharf R, Guarnieri DJ, Taylor JR, DiLeone RJ. Orexin mediates morphine place preference, but not morphine-induced hyperactivity or sensitization. Brain Res. 2010;1317:24–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Bardo MT, Bevins RA. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl). 2000;153(1):31–43.CrossRefGoogle Scholar
  31. 31.
    Bardo MT, Valone JM, Bevins RA. Locomotion and conditioned place preference produced by acute intravenous amphetamine: role of dopamine receptors and individual differences in amphetamine self-administration. Psychopharmacology (Berl). 1999;143(1):39–46.CrossRefGoogle Scholar
  32. 32.
    Deroche V, Le Moal M, Piazza PV. Cocaine self-administration increases the incentive motivational properties of the drug in rats. Eur J Neurosci. 1999;11(8):2731–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437(7058):556–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Harris GC, Wimmer M, Randall-Thompson JF, Aston-Jones G. Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. Behavioural Brain Research. 2007;183(1):43–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ. Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci U S A. 2008;105(49):19480–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol. 2006;148(6):752–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Boutrel B, Kenny PJ, Specio SE, et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A. 2005;102(52):19168–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Aston-Jones G, Smith RJ, Moorman DE, Richardson KA. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology. 2009;56:112–21.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang B, You ZB, Wise RA. Reinstatement of cocaine seeking by hypocretin (orexin) in the ventral ­tegmental area: independence from the local corticotropin-releasing factor network. Biol Psychiatry. 2009;65(10):857–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Harris GC, Aston-Jones G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 2006;29(10):571–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47(6):419–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Hamlin AS, Clemens KJ, McNally GP. Renewal of extinguished cocaine-seeking. Neuroscience. 2008;151:659–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A. 1999;96(19):10911–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Zheng H, Patterson LM, Berthoud HR. Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function. J Comp Neurol. 2005;485(2):127–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Pasumarthi R, Reznikov LR, Fadel J. Activation of orexin neurons by acute nicotine. Eur J Pharmacol. 2006;535(1–3):172–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Dayas CV, McGranahan TM, Martin-Fardon R, Weiss F. Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relape. Biol Psychiatry. 2008;63(2):152–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Pasumarthi RK, Fadel J. Activation of orexin/hypocretin projections to basal forebrain and paraventri­cular thalamus by acute nicotine. Brain Res Bull. 2008;77(6):367–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Psychiatry, Ribicoff Research Facilities, Connecticut Mental Health CenterYale University School of MedicineNew HavenUSA

Personalised recommendations