Skip to main content

The Neurobiology of Sleep–Wake Systems: An Overview

  • Chapter
  • First Online:
Narcolepsy
  • 1846 Accesses

Abstract

Following studies of patients with postinfluenza encephalitis, the neuropathologist von Economo reported that inflammatory lesions of the preoptic area (POA) were often associated with insomnia and therefore proposed that the POA was critical for the production of normal sleep [1]. Then, Ranson in monkeys, Nauta in rats, and McGinty in cats showed that POA lesions induce a profound and persistent insomnia [2–4]. It was later shown in cats that POA electrical stimulation induces EEG slow-wave activity and sleep (SWS) [5]. Finally, putative sleep-promoting neurons displaying an elevated discharge rate during SWS compared to waking (W), diffusely distributed within a large region encompassing the horizontal limb of the diagonal bands of Broca and the lateral preoptic area-substantia innominata were recorded in freely moving cats [6]. Altogether, these studies indicate that the POA is a unique brain structure containing neurons that directly promote sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ach:

Acetylcholine

ADA:

Adenosine

BF:

Basal Forebrain

CTb:

Cholera toxin b subunit

DPGi:

Dorsal paragigantocellular reticular nucleus

dDpMe:

Dorsal deep mesencephalic reticular nucleus

DRN:

Dorsal raphe nucleus

Fos+:

Neuron immunoreactive for Fos

GAD:

Glutamate decarboxylase

GiA:

Alpha gigantocellular nucleus

GiV:

Ventral gigantocellular reticular nucleus

Gly:

Glycine

Hcrt:

Hypocretin

His:

Histamine

LC:

Locus coeruleus

LDT:

Laterodorsal pontine nucleus

LHA:

Lateral hypothalamic area

Mc:

Nucleus reticularis magnocellularis

MCH:

Melanin-concentrating hormone

MnPn:

Median preoptic nucleus

NA:

Norepinephrine

PeF:

Perifornical hypothalamic area

peri-LC alpha:

Peri-locus coeruleus alpha

PH:

Posterior hypothalamus

PnC:

Pontis caudalis nucleus

PnO:

Pontis oralis nucleus

POA:

Preoptic area

PPT:

Pedunculopontine nucleus

SCN:

Suprachiasmatic nucleus

SLD:

Sublaterodorsal nucleus

TMN:

Tuberomamillary nucleus

vlPAG:

Ventrolateral periaqueductal gray

VLPO:

Ventrolateral preoptic nucleus

ZI:

Zona incerta

References

  1. von Economo C. Die pathologie des schlafes. In: Von Bethe A, Bergman GV, Embden G, Ellinger UA, editors. Handbuch des Normalen und Pathologischen Physiologie. Berlin: Springer; 1926. p. 591–610.

    Google Scholar 

  2. McGinty DJ, Sterman MB. Sleep suppression after basal forebrain lesions in the cat. Science. 1968;160(833):1253–5.

    Article  PubMed  CAS  Google Scholar 

  3. Nauta W. Hypothalamic regulation of sleep in rats. An experimental study. J Neurophysiol. 1946;9:285–316.

    PubMed  CAS  Google Scholar 

  4. Ranson SW. Somnolence caused by hypothalamic lesions in the monkey. Arch Neurol Psychiatry. 1939;41:1–23.

    Article  Google Scholar 

  5. Sterman MB, Clemente CD. Forebrain inhibitory mechanisms: cortical synchronization induced by basal forebrain stimulation. Exp Neurol. 1962;6:91–102.

    Article  PubMed  CAS  Google Scholar 

  6. Szymusiak R, McGinty D. Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res. 1986;370(1):82–92.

    Article  PubMed  CAS  Google Scholar 

  7. Moruzzi G. The sleep-waking cycle. Ergeb Physiol. 1972;64:1–165.

    PubMed  CAS  Google Scholar 

  8. Borbely AA. From slow waves to sleep homeostasis: new perspectives. Arch Ital Biol. 2001;139(1–2):53–61.

    PubMed  CAS  Google Scholar 

  9. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271(5246):216–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gvilia I, Turner A, McGinty D, Szymusiak R. Preoptic area neurons and the homeostatic regulation of rapid eye movement sleep. J Neurosci. 2006;26(11):3037–44.

    Article  PubMed  CAS  Google Scholar 

  11. Novak CM, Nunez AA. Daily rhythms in Fos activity in the rat ventrolateral preoptic area and midline thalamic nuclei. Am J Physiol. 1998;275(5 Pt 2):R1620–6.

    PubMed  CAS  Google Scholar 

  12. Fort P, Bassetti CL, Luppi PH. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci. 2009;29(9):1741–53.

    Article  PubMed  CAS  Google Scholar 

  13. Szymusiak R, Alam N, Steininger TL, McGinty D. Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res. 1998;803(1–2):178–88.

    Article  PubMed  CAS  Google Scholar 

  14. Lu J, Greco MA, Shiromani P, Saper CB. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci. 2000;20(10):3830–42.

    PubMed  CAS  Google Scholar 

  15. Gallopin T, Fort P, Eggermann E, et al. Identification of sleep-promoting neurons in vitro. Nature. 2000;404(6781):992–5.

    Article  PubMed  CAS  Google Scholar 

  16. Gallopin T, Luppi PH, Rambert FA, Frydman A, Fort P. Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: an in vitro pharmacologic study. Sleep. 2004;27(1):19–25.

    PubMed  Google Scholar 

  17. Eggermann E, Serafin M, Bayer L, et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience. 2001;108(2):177–81.

    Article  PubMed  CAS  Google Scholar 

  18. Gallopin T, Luppi PH, Cauli B, et al. The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience. 2005;134(4):1377–90.

    Article  PubMed  CAS  Google Scholar 

  19. Scammell TE, Gerashchenko DY, Mochizuki T, et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience. 2001;107(4):653–63.

    Article  PubMed  CAS  Google Scholar 

  20. Porkka-Heiskanen T, Strecker RE, McCarley RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience. 2000;99(3):507–17.

    Article  PubMed  CAS  Google Scholar 

  21. Rainnie DG, Grunze HC, McCarley RW, Greene RW. Adenosine inhibition of mesopontine cholinergic ­neurons: implications for EEG arousal. Science. 1994;263(5147):689–92.

    Article  PubMed  CAS  Google Scholar 

  22. Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res. 2003;12(4):283–90.

    Article  PubMed  Google Scholar 

  23. Urade Y, Eguchi N, Qu WM, et al. Minireview: sleep regulation in adenosine A(2A) receptor-deficient mice. Neurology. 2003;61(11 Suppl 6):S94–6.

    Article  PubMed  CAS  Google Scholar 

  24. Huang ZL, Qu WM, Eguchi N, et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. 2005;8(7):858–9.

    Article  PubMed  CAS  Google Scholar 

  25. Fort P, Luppi PH, Gallopin T. In vitro identification of the presumed sleep-promoting neurons of the ventrolateral preoptic nucleus (VLPO). In: Luppi PH, editor. Sleep. Circuits and Functions: CRC Press; 2005. p. 43–64.

    Google Scholar 

  26. Jouvet M, Michel F. Corrélations électromyographiques du sommeil chez le chat décortiqué et mésencéphalique chronique. CR Soc Biol. 1959;153:422–5.

    CAS  Google Scholar 

  27. Jouvet M. The paradoxical phase of sleep. Int J Neurol. 1965;5(2):131–50.

    PubMed  CAS  Google Scholar 

  28. George R, Haslett WL, Jenden DJ. A cholinergic mechanism in the brainstem reticular formation: induction of paradoxixal sleep. Int J Neuropharmacol. 1964;3:541–52.

    Article  PubMed  CAS  Google Scholar 

  29. Sakai K, Sastre JP, Kanamori N, Jouvet M. State-specific neurones in the ponto-medullary reticular formation with special reference to the postural atonia during paradoxical sleep in the cat. In: Pompeiano O, Aimone Marsan C, editors. Brain mechanisms of perceptual awareness and purposeful behavior. New York: Raven; 1981. p. 405–29.

    Google Scholar 

  30. Sakai K, Kanamori N, Jouvet M. Neuronal activity specific to paradoxical sleep in the bulbar reticular formation in the unrestrained cat. C R Seances Acad Sci D. 1979;289(6):557–61.

    PubMed  CAS  Google Scholar 

  31. Sakai K, Crochet S, Onoe H. Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch Ital Biol. 2001;139(1–2):93–107.

    PubMed  CAS  Google Scholar 

  32. Chase MH, Soja PJ, Morales FR. Evidence that glycine mediates the postsynaptic potentials that inhibit lumbar motoneurons during the atonia of active sleep. J Neurosci. 1989;9(3):743–51.

    PubMed  CAS  Google Scholar 

  33. Luppi PH, Gervasoni D, Verret L, et al. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris. 2006;100(5–6):271–83.

    Article  PubMed  CAS  Google Scholar 

  34. Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroana­tomical study. Eur J Neurosci. 2002;16(10):1959–73.

    Article  PubMed  Google Scholar 

  35. Gnadt JW, Pegram GV. Cholinergic brainstem mechanisms of REM sleep in the rat. Brain Res. 1986;384(1):29–41.

    Article  PubMed  CAS  Google Scholar 

  36. Shiromani PJ, Fishbein W. Continuous pontine cholinergic microinfusion via mini-pump induces sustained alterations in rapid eye movement (REM) sleep. Pharmacol Biochem Behav. 1986;25(6):1253–61.

    Article  PubMed  CAS  Google Scholar 

  37. Bourgin P, Escourrou P, Gaultier C, Adrien J. Induction of rapid eye movement sleep by carbachol infusion into the pontine reticular formation in the rat. Neuroreport. 1995;6(3):532–6.

    Article  PubMed  CAS  Google Scholar 

  38. Deurveilher S, Hars B, Hennevin E. Pontine microinjection of carbachol does not reliably enhance paradoxical sleep in rats. Sleep. 1997;20(8):593–607.

    PubMed  CAS  Google Scholar 

  39. Maloney KJ, Mainville L, Jones BE. Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci. 1999;19(8):3057–72.

    PubMed  CAS  Google Scholar 

  40. Verret L, Leger L, Fort P, Luppi PH. Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. Eur J Neurosci. 2005;21(9):2488–504.

    Article  PubMed  Google Scholar 

  41. Sapin E, Lapray D, Berod A, et al. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS ONE. 2009;4(1):e4272.

    Article  PubMed  Google Scholar 

  42. Clement O, Sapin E, Berod A, Gervasoni D, Fort P, Luppi P-H. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic SfN (Abstract). 2009.

    Google Scholar 

  43. Onoe H, Sakai K. Kainate receptors: a novel mechanism in paradoxical (REM) sleep generation. Neuroreport. 1995;6(2):353–6.

    Article  PubMed  CAS  Google Scholar 

  44. Beitz AJ. Relationship of glutamate and aspartate to the periaqueductal gray-raphe magnus projection: analysis using immunocytochemistry and microdialysis. J Histochem Cytochem. 1990;38(12):1755–65.

    Article  PubMed  CAS  Google Scholar 

  45. Boissard R, Fort P, Gervasoni D, Barbagli B, Luppi PH. Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci. 2003;18(6):1627–39.

    Article  PubMed  Google Scholar 

  46. Pollock MS, Mistlberger RE. Rapid eye movement sleep induction by microinjection of the GABA-A antagonist bicuculline into the dorsal subcoeruleus area of the rat. Brain Res. 2003;962(1–2):68–77.

    Article  PubMed  CAS  Google Scholar 

  47. Xi MC, Morales FR, Chase MH. Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol. 1999;82(4):2015–9.

    PubMed  CAS  Google Scholar 

  48. Boissard R, Gervasoni D, Fort P, Henninot V, Barbagli B, Luppi PH. Neuronal networks responsible for paradoxical sleep onset and maintenance in rats: a new hypothesis. Sleep. 2000;23(Suppl):107.

    Google Scholar 

  49. Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441(7093):589–94.

    Article  PubMed  CAS  Google Scholar 

  50. Maloney KJ, Mainville L, Jones BE. c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery. J Neurosci. 2000;20(12):4669–79.

    PubMed  CAS  Google Scholar 

  51. Sastre JP, Buda C, Kitahama K, Jouvet M. Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience. 1996;74(2):415–26.

    Article  PubMed  CAS  Google Scholar 

  52. Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci. 2006;26(40):10292–8.

    Article  PubMed  CAS  Google Scholar 

  53. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;46(5):787–98.

    Article  PubMed  CAS  Google Scholar 

  54. Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;25(28):6716–20.

    Article  PubMed  CAS  Google Scholar 

  55. Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science. 1975;189(4196):55–8.

    Article  PubMed  CAS  Google Scholar 

  56. McCarley RW, Hobson JA. Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science. 1975;189(4196):58–60.

    Article  PubMed  CAS  Google Scholar 

  57. Tononi G, Pompeiano M, Cirelli C. Suppression of desynchronized sleep through microinjection of the alpha 2-adrenergic agonist clonidine in the dorsal pontine tegmentum of the cat. Pflugers Arch. 1991;418(5):512–8.

    Article  PubMed  CAS  Google Scholar 

  58. Crochet S, Sakai K. Effects of microdialysis application of monoamines on the EEG and behavioural states in the cat mesopontine tegmentum. Eur J Neurosci. 1999;11(10):3738–52.

    Article  PubMed  CAS  Google Scholar 

  59. Sakai K, Koyama Y. Are there cholinergic and non-cholinergic paradoxical sleep-on neurones in the pons? Neuroreport. 1996;7(15–17):2449–53.

    Article  PubMed  CAS  Google Scholar 

  60. Leger L, Goutagny R, Sapin E, Salvert D, Fort P, Luppi PH. Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. J Chem Neuroanat. 2008;37(3):139–57.

    Google Scholar 

  61. Guyenet PG, Aghajanian GK. ACh, substance P and met-enkephalin in the locus coeruleus: pharmacological evidence for independent sites of action. Eur J Pharmacol. 1979;53(4):319–28.

    Article  PubMed  CAS  Google Scholar 

  62. Koyama Y, Kayama Y. Mutual interactions among cholinergic, noradrenergic and serotonergic neurons studied by ionophoresis of these transmitters in rat brainstem nuclei. Neuroscience. 1993;55(4):1117–26.

    Article  PubMed  CAS  Google Scholar 

  63. Luppi PH, Charlety PJ, Fort P, Akaoka H, Chouvet G, Jouvet M. Anatomical and electrophysiological evidence for a glycinergic inhibitory innervation of the rat locus coeruleus. Neurosci Lett. 1991;128(1):33–6.

    Article  PubMed  CAS  Google Scholar 

  64. Jones BE. Noradrenergic locus coeruleus neurons: their distant connections and their relationship to neighboring (including cholinergic and GABAergic) neurons of the central gray and reticular formation. Prog Brain Res. 1991;88:15–30.

    Article  PubMed  CAS  Google Scholar 

  65. Darracq L, Gervasoni D, Souliere F, et al. Effect of strychnine on rat locus coeruleus neurones during sleep and wakefulness. Neuroreport. 1996;8(1):351–5.

    Article  PubMed  CAS  Google Scholar 

  66. Gervasoni D, Darracq L, Fort P, Souliere F, Chouvet G, Luppi PH. Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. Eur J Neurosci. 1998;10(3):964–70.

    Article  PubMed  CAS  Google Scholar 

  67. Gervasoni D, Peyron C, Rampon C, et al. Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci. 2000;20(11):4217–25.

    PubMed  CAS  Google Scholar 

  68. Nitz D, Siegel J. GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol. 1997;273(1 Pt 2):R451–5.

    PubMed  CAS  Google Scholar 

  69. Nitz D, Siegel JM. GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience. 1997;78(3):795–801.

    Article  PubMed  CAS  Google Scholar 

  70. Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci. 2002;22(11):4568–76.

    PubMed  CAS  Google Scholar 

  71. Verret L, Fort P, Gervasoni D, Leger L, Luppi PH. Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J Comp Neurol. 2006;495(5):573–86.

    Article  PubMed  CAS  Google Scholar 

  72. Woch G, Davies RO, Pack AI, Kubin L. Behaviour of raphe cells projecting to the dorsomedial medulla during carbachol-induced atonia in the cat. J Physiol. 1996;490(Pt 3):745–58.

    PubMed  CAS  Google Scholar 

  73. Goutagny R, Luppi PH, Salvert D, Lapray D, Gervasoni D, Fort P. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience. 2008;152(3):849–57.

    Article  PubMed  CAS  Google Scholar 

  74. Ennis M, Aston-Jones G. GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci. 1989;9(8):2973–81.

    PubMed  CAS  Google Scholar 

  75. Kaur S, Saxena RN, Mallick BN. GABAergic neurons in prepositus hypoglossi regulate REM sleep by its action on locus coeruleus in freely moving rats. Synapse. 2001;42(3):141–50.

    Article  PubMed  CAS  Google Scholar 

  76. Liu R, Jolas T, Aghajanian G. Serotonin 5-HT(2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res. 2000;873(1):34–45.

    Article  PubMed  CAS  Google Scholar 

  77. Verret L, Goutagny R, Fort P, et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 2003;4(1):19.

    Article  PubMed  Google Scholar 

  78. Lin JS, Sakai K, Vanni-Mercier G, Jouvet M. A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res. 1989;479(2):225–40.

    Article  PubMed  CAS  Google Scholar 

  79. Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A. 2009;106(7):2418–22.

    Article  PubMed  CAS  Google Scholar 

  80. Ahnaou A, Drinkenburg WH, Bouwknecht JA, Alcazar J, Steckler T, Dautzenberg FM. Blocking melanin-concentrating hormone MCH1 receptor affects rat sleep-wake architecture. Eur J Pharmacol. 2008;579(1–3):177–88.

    Article  PubMed  CAS  Google Scholar 

  81. Adamantidis A, Salvert D, Goutagny R, et al. Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci. 2008;27(7):1793–800.

    Article  PubMed  Google Scholar 

  82. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M. Abnormal response of melanin-concentrating hormone deficient mice to fasting: Hyperactivity and rapid eye movement sleep suppression. Neuroscience. 2008;156(4):819–29.

    Article  PubMed  CAS  Google Scholar 

  83. Peyron C, Sapin E, Leger L, Luppi PH, Fort P. Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides. 2009;30(11):2052–9.

    Article  PubMed  CAS  Google Scholar 

  84. Bayer L, Mairet-Coello G, Risold PY, Griffond B. Orexin/hypocretin neurons: chemical phenotype and possible interactions with melanin-concentrating hormone neurons. Regul Pept. 2002;104(1–3):33–9.

    Article  PubMed  CAS  Google Scholar 

  85. Guan JL, Uehara K, Lu S, et al. Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int J Obes Relat Metab Disord. 2002;26(12):1523–32.

    Article  PubMed  CAS  Google Scholar 

  86. Rao Y, Lu M, Ge F, et al. Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci. 2008;28(37):9101–10.

    Article  PubMed  CAS  Google Scholar 

  87. Goutagny R, Luppi PH, Salvert D, Gervasoni D, Fort P. GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep-waking cycle. Neuroreport. 2005;16(10):1069–73.

    Article  PubMed  CAS  Google Scholar 

  88. Alam MN, Kumar S, Bashir T, et al. GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol. 2005;563(Pt 2):569–82.

    PubMed  CAS  Google Scholar 

  89. Espana RA, Baldo BA, Kelley AE, Berridge CW. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience. 2001;106(4):699–715.

    Article  PubMed  CAS  Google Scholar 

  90. Huang ZL, Qu WM, Li WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A. 2001;98(17):9965–70.

    Article  PubMed  CAS  Google Scholar 

  91. Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A. 1999;96(19):10911–6.

    Article  PubMed  CAS  Google Scholar 

  92. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6(9):991–7.

    Article  PubMed  CAS  Google Scholar 

  93. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76.

    Article  PubMed  CAS  Google Scholar 

  94. Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.

    Article  PubMed  CAS  Google Scholar 

  95. Gervasoni D, Lin SC, Ribeiro S, Soares ES, Pantoja J, Nicolelis MA. Global forebrain dynamics predict rat behavioral states and their transitions. J Neurosci. 2004;24(49):11137–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNRS and Université Claude Bernard Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Hervé Luppi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Luppi, PH., Fort, P. (2011). The Neurobiology of Sleep–Wake Systems: An Overview. In: Baumann, C., Bassetti, C., Scammell, T. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8390-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8390-9_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8389-3

  • Online ISBN: 978-1-4419-8390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics