Etiology and Genetics of Human Narcolepsy

Chapter

Abstract

Low levels of the neuropeptide hypocretin-1 (hcrt-1, also called orexin-A) are found in the cerebrospinal fluid (CSF) of most people with narcolepsy with cataplexy and in some without cataplexy [1–6]. As a result, in the most recent revision of the International Classification of Sleep Disorders (ICSD), narcolepsy with cataplexy and narcolepsy without cataplexy have been separated [7]. In this chapter, we will discuss the etiology of narcolepsy/hcrt deficiency, as there is a strong suggestion of homogeneity based on the very high association with human leukocyte antigen (HLA) DQB1*0602 and low CSF hcrt-1. References to narcolepsy without cataplexy, defined by sleepiness and a positive multiple sleep latency test (MSLT), will also be made, although the condition likely represents a constellation of problems and pathologies. We will also briefly discuss secondary narcolepsy cases.

Keywords

Human leukocyte antigen Mutation Autoimmunity Genetics Prevalence Narcolepsy 

References

  1. 1.
    Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355(9197):39–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6(9):991–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Thannickal TC, Moore RY, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Mignot E, Lammers GJ, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Kanbayashi T, Inoue Y, Chiba S, et al. CSF hypocretin-1 (orexin-A) concentrations in narcolepsy with and without cataplexy and idiopathic hypersomnia. J Sleep Res. 2002;11(1):91–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Krahn LE, Pankratz VS, Oliver L, Boeve BF, Silber MH. Hypocretin (orexin) levels in cerebrospinal fluid of patients with narcolepsy: relationship to cataplexy and HLA DQB1*0602 status. Sleep. 2002;25(7):733–6.PubMedGoogle Scholar
  7. 7.
    American Academy of sleep Medicine. ICSD-2. International classification of sleep disorders, Diagnostic and coding manual. 2nd ed. Westchester, IL: American Academy of Sleep Medicine; 2005.Google Scholar
  8. 8.
    Hublin C, Kaprio J, Partinen M, Heikkila K, Koskenvuo M. Daytime sleepiness in an adult, Finnish population. J Intern Med. 1996;239(5):417–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Dauvilliers Y, Billiard M, Montplaisir J. Clinical aspects and pathophysiology of narcolepsy. Clin Neurophysiol. 2003;114(11):2000–17.PubMedCrossRefGoogle Scholar
  10. 10.
    Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50(2 Suppl 1):S16–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Longstreth Jr WT, Ton TG, Koepsell T, Gersuk VH, Hendrickson A, Velde S. Prevalence of narcolepsy in King County, Washington, USA. Sleep Med. 2009;10(4):422–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Solomon P. Narcolepsy in Negroes. Dis Nerv Syst. 1945;6:179–83.Google Scholar
  13. 13.
    Mignot E, Hayduk R, Black J, Grumet FC, Guilleminault C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep. 1997;20(11):1012–20.PubMedGoogle Scholar
  14. 14.
    Chen W, Mignot E. Narcolepsy and hypersomnia of central origin: diagnosis, differential pearls, and management. In: Barkoukis T, Avidan A, editors. Review of sleep medicine. 2nd ed. Philadelphia: Butterworth Heinman Elsevier; 2007. p. 75–94.CrossRefGoogle Scholar
  15. 15.
    Mignot E, Lin L, Finn L, et al. Correlates of sleep-onset REM periods during the Multiple Sleep Latency Test in community adults. Brain. 2006;129(Pt 6):1609–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Singh M, Drake CL, Roth T. The prevalence of multiple sleep-onset REM periods in a population-based sample. Sleep. 2006;29(7):890–5.PubMedGoogle Scholar
  17. 17.
    Silber MH, Krahn LE, Olson EJ, Pankratz VS. The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep. 2002;25(2):197–202.PubMedGoogle Scholar
  18. 18.
    Dauvilliers Y, Baumann CR, Carlander B, et al. CSF hypocretin-1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. J Neurol Neurosurg Psychiatry. 2003;74(12):1667–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Bourgin P, Zeitzer JM, Mignot E. CSF hypocretin-1 assessment in sleep and neurological disorders. Lancet Neurol. 2008;7(7):649–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Thannickal TC, Nienhuis R, Siegel JM. Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep. 2009;32(8):993–8.PubMedGoogle Scholar
  21. 21.
    Lin L, Mignot E. Human leukocyte antigen and narcolepsy: present status and relationship with familial history and hypocretin deficiency. In: Bassetti C, Billiard M, Mignot E, editors. Narcolepsy and hypersomnia, vol. 220. New York: Informa Health Care; 2007. p. 411–26.Google Scholar
  22. 22.
    Honda M, Honda Y, Uchida S, Miyazaki S, Tokunaga K. Monozygotic twins incompletely concordant for narcolepsy. Biol Psychiatry. 2001;49(11):943–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Honda Y. A monozygotic pair completely discordant for narcolepsy, with sleep deprivation as a possible precipitating factor. Sleep Biol Rhythm. 2003;1:147–9.CrossRefGoogle Scholar
  24. 24.
    Dauvilliers Y, Maret S, Bassetti C, et al. A monozygotic twin pair discordant for narcolepsy and CSF hypocretin-1. Neurology. 2004;62(11):2137–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Gill AW. Idopathic and traumatic narcolepsy. Lancet. 1941;1:474.CrossRefGoogle Scholar
  26. 26.
    Guilleminault C, Faull KF, Miles L, van den Hoed J. Posttraumatic excessive daytime sleepiness: a review of 20 patients. Neurology. 1983;33(12):1584–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Lankford DA, Wellman JJ, O’Hara C. Posttraumatic narcolepsy in mild to moderate closed head injury. Sleep. 1994;17(8 Suppl):S25–8.PubMedGoogle Scholar
  28. 28.
    Orellana C, Villemin E, Tafti M, Carlander B, Besset A, Billiard M. Life events in the year preceding the onset of narcolepsy. Sleep. 1994;17(8 Suppl):S50–3.PubMedGoogle Scholar
  29. 29.
    Roth B. Narcolepsy and hypersomnia. Basel: Karger; 1980.Google Scholar
  30. 30.
    Mueller-Eckhardt G, Meier-Ewart K, Schiefer HG. Is there an infectious origin of narcolepsy? Lancet. 1990;335(8686):424.PubMedCrossRefGoogle Scholar
  31. 31.
    Aran A, Lin L, Nevsimalova S, et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep. 2009;32(8):979–83.PubMedGoogle Scholar
  32. 32.
    Koepsell TD, Longstreth WT, Ton TG. Medical exposures in youth and the frequency of narcolepsy with cataplexy: a population-based case-control study in genetically predisposed people. J Sleep Res. 2010;19(1 Pt 1):80–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230–5.PubMedCrossRefGoogle Scholar
  34. 34.
    D’Alessandro R, Rinaldi R, Cristina E, Gamberini G, Lugaresi E. Prevalence of excessive daytime sleepiness an open epidemiological problem. Sleep. 1995;18(5):389–91.PubMedGoogle Scholar
  35. 35.
    Hungs M, Lin L, Okun M, Mignot E. Polymorphisms in the vicinity of the hypocretin/orexin are not associated with human narcolepsy. Neurology. 2001;57(10):1893–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Olafsdottir BR, Rye DB, Scammell TE, Matheson JK, Stefansson K, Gulcher JR. Polymorphisms in hypocretin/orexin pathway genes and narcolepsy. Neurology. 2001;57(10):1896–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Ripley B, Overeem S, Fujiki N, et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology. 2001;57(12):2253–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Okun ML, Lin L, Pelin Z, Hong S, Mignot E. Clinical aspects of narcolepsy-cataplexy across ethnic groups. Sleep. 2002;25(1):27–35.PubMedGoogle Scholar
  39. 39.
    Mignot E, Lin L, Rogers W, et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-­cataplexy in three ethnic groups. Am J Hum Genet. 2001;68(3):686–99.PubMedCrossRefGoogle Scholar
  40. 40.
    Honda Y, Asake A, Tanaka Y, Juji T. Discrimination of narcolepsy by using genetic markers and HLA. Sleep Res. 1983;12:254.Google Scholar
  41. 41.
    Juji T, Satake M, Honda Y, Doi Y. HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive. Tissue Antigens. 1984;24:316–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Scammell TE. The frustrating and mostly fruitless search for an autoimmune cause of narcolepsy. Sleep. 2006;29(5):601–2.PubMedGoogle Scholar
  43. 43.
    Thannickal TC, Siegel JM, Nienhuis R, Moore RY. Pattern of hypocretin (orexin) soma and axon loss, and gliosis, in human narcolepsy. Brain Pathol. 2003;13(3):340–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Kaufmann C, Schuld A, Pollmacher T, Auer DP. Reduced cortical gray matter in narcolepsy: preliminary findings with voxel-based morphometry. Neurology. 2002;58(12):1852–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Draganski B, Geisler P, Hajak G, et al. Hypothalamic gray matter changes in narcoleptic patients. Nat Med. 2002;8(11):1186–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Overeem S, Steens SC, Good CD, et al. Voxel-based morphometry in hypocretin-deficient narcolepsy. Sleep. 2003;26(1):44–6.PubMedGoogle Scholar
  47. 47.
    Mignot E, Tafti M, Dement WC, Grumet FC. Narcolepsy and immunity. Adv Neuroimmunol. 1995;5(1):23–37.PubMedCrossRefGoogle Scholar
  48. 48.
    Carlander B, Eliaou JF, Billiard M. Autoimmune hypothesis in narcolepsy. Neurophysiol Clin. 1993;23(1):15–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Cvetkovic-Lopes V, Bayer L, Dorsaz S, et al. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest. 2010;120(3):713–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Mignot E, Lin X, Arrigoni J, et al. DQB1*0602 and DQA1*0102 (DQ1) are better markers than DR2 for narcolepsy in Caucasian and black Americans. Sleep. 1994;17(8 Suppl):S60–7.PubMedGoogle Scholar
  51. 51.
    Mignot E, Kimura A, Lattermann A, et al. Extensive HLA class II studies in 58 non-DRB1*15 (DR2) narcoleptic patients with cataplexy. Tissue Antigens. 1997;49(4):329–41.PubMedCrossRefGoogle Scholar
  52. 52.
    Ellis MC, Hetisimer AH, Ruddy DA, et al. HLA class II haplotype and sequence analysis support a role for DQ in narcolepsy. Immunogenetics. 1997;46(5):410–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Pelin Z, Guilleminault C, Risch N, Grumet FC, Mignot E. HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. Tissue Antigens. 1998;51(1):96–100.PubMedCrossRefGoogle Scholar
  54. 54.
    Hong SC, Lin L, Lo B, et al. DQB1*0301 and DQB1*0601 modulate narcolepsy susceptibility in Koreans. Hum Immunol. 2007;68(1):59–68.PubMedCrossRefGoogle Scholar
  55. 55.
    Anic-Labat S, Guilleminault C, Kraemer HC, Meehan J, Arrigoni J, Mignot E. Validation of a cataplexy questionnaire in 983 sleep-disorders patients. Sleep. 1999;22(1):77–87.PubMedGoogle Scholar
  56. 56.
    Mignot E, Lin X, Kalil J, et al. DQB1-0602 (DQw1) is not present in most nonDR2 Caucasian narcoleptics. Sleep. 1992;15(5):415–22.PubMedGoogle Scholar
  57. 57.
    Nakayama J, Miura M, Honda M, Miki T, Honda Y, Arinami T. Linkage of human narcolepsy with HLA association to chromosome 4p13-q21. Genomics. 2000;65(1):84–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Hohjoh H, Terada N, Nakayama T, et al. Case-control study with narcoleptic patients and healthy controls who, like the patients, possess both HLA-DRB1*1501 and -DQB1*0602. Tissue Antigens. 2001;57(3):230–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Kato T, Honda M, Kuwata S, et al. Novel polymorphism in the promoter region of the tumor necrosis factor alpha gene: no association with narcolepsy. Am J Med Genet. 1999;88(4):301–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Wieczorek S, Gencik M, Rujescu D, et al. TNFA promoter polymorphisms and narcolepsy. Tissue Antigens. 2003;61(6):437–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Dauvilliers Y, Neidhart E, Billiard M, Tafti M. Sexual dimorphism of the catechol-O-methyltransferase gene in narcolepsy is associated with response to modafinil. Pharmacogenomics J. 2002;2(1):65–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Dauvilliers Y, Neidhart E, Lecendreux M, Billiard M, Tafti M. MAO-A and COMT polymorphisms and gene effects in narcolepsy. Mol Psychiatry. 2001;6(4):367–72.PubMedCrossRefGoogle Scholar
  63. 63.
    Miyagawa T, Kawashima M, Nishida N, et al. Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nat Genet. 2008;40(11):1324–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Miyagawa T, Honda M, Kawashima M, et al. Polymorphism located between CPT1B and CHKB, and HLA-DRB1*1501-DQB1*0602 haplotype confer susceptibility to CNS hypersomnias (essential hypersomnia). PLoS One. 2009;4(4):e5394.PubMedCrossRefGoogle Scholar
  65. 65.
    Hallmayer J, Faraco J, Lin L, et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet. 2009;41(6):708–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Serra L, Montagna P, Mignot E, Lugaresi E, Plazzi G. Cataplexy features in childhood narcolepsy. Mov Disord. 2008;23(6):858–65.PubMedCrossRefGoogle Scholar
  67. 67.
    Dalal MA, Schuld A, Pollmacher T. Undetectable CSF level of orexin A (hypocretin-1) in a HLA-DR2 negative patient with narcolepsy-cataplexy. J Sleep Res. 2002;11(3):273.PubMedCrossRefGoogle Scholar
  68. 68.
    Hecht M, Lin L, Kushida CA, et al. Immunosuppression with prednisone in an 8-year-old boy with an acute onset of hypocretin deficiency/narcolepsy. Sleep. 2003;26(7):809–10.PubMedGoogle Scholar
  69. 69.
    Kubota H, Kanbayashi T, Tanabe Y, et al. Decreased cerebrospinal fluid hypocretin-1 levels near the onset of narcolepsy in 2 prepubertal children. Sleep. 2003;26(5):555–7.PubMedGoogle Scholar
  70. 70.
    Salomon RM, Ripley B, Kennedy JS, et al. Diurnal variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects. Biol Psychiatry. 2003;54(2):96–104.PubMedCrossRefGoogle Scholar
  71. 71.
    Thannickal TC, Lai YY, Siegel JM. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain. 2007;130(Pt 6):1586–95.PubMedCrossRefGoogle Scholar
  72. 72.
    Fronczek R, Overeem S, Lee SY, et al. Hypocretin (orexin) loss in Parkinson’s disease. Brain. 2007;130(Pt 6):1577–85.PubMedCrossRefGoogle Scholar
  73. 73.
    Aziz A, Fronczek R, Maat-Schieman M, et al. Hypocretin and melanin-concentrating hormone in patients with Huntington disease. Brain Pathol. 2008;18(4):474–83.PubMedGoogle Scholar
  74. 74.
    von Economo C. Encephalitis lethargica ITS sequelae and treatment. London: Oxford University Press; 1931.Google Scholar
  75. 75.
    Daniels LE. Narcolepsy. Medicine. 1934;XIII(1):1–122.Google Scholar
  76. 76.
    Mignot E. A hundred years of narcolepsy research. Arch Ital Biol. 2001;139(3):207–20.PubMedGoogle Scholar
  77. 77.
    Melberg A, Ripley B, Lin L, Hetta J, Mignot E, Nishino S. Hypocretin deficiency in familial symptomatic narcolepsy. Ann Neurol. 2001;49(1):136–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Hor H, Vicário JL, Pfister C, Lammers GJ, Tafti M, Peraita-Adrados R. Familial narcolepsy, obesity, and type 2 diabetes with hypocretin deficiency. Eur J Med Sci. 2008;138(Supplementum 162):5S.Google Scholar
  79. 79.
    Nelson GB, Hahn JS. Stimulus-induced drop episodes in Coffin-Lowry syndrome. Pediatrics. 2003;111(3):197–202.CrossRefGoogle Scholar
  80. 80.
    Parkes JD. Genetic factors in human sleep disorders with special reference to Norrie disease, Prader-Willi syndrome and Moebius syndrome. J Sleep Res. 1999;8 Suppl 1:14–22.PubMedCrossRefGoogle Scholar
  81. 81.
    Kanbayashi T, Abe M, Fujimoto S, et al. Hypocretin deficiency in niemann-pick type C with cataplexy. Neuropediatrics. 2003;34(1):52–3.PubMedCrossRefGoogle Scholar
  82. 82.
    Vankova J, Stepanova I, Jech R, et al. Sleep disturbances and hypocretin deficiency in Niemann-Pick disease type C. Sleep. 2003;26(4):427–30.PubMedGoogle Scholar
  83. 83.
    Martinez-Rodriguez JE, Lin L, Iranzo A, et al. Decreased hypocretin-1 (Orexin-A) levels in the cerebrospinal fluid of patients with myotonic dystrophy and excessive daytime sleepiness. Sleep. 2003;26(3):287–90.PubMedGoogle Scholar
  84. 84.
    Katz ES, McGrath S, Marcus CL. Late-onset central hypoventilation with hypothalamic dysfunction: a distinct clinical syndrome. Pediatr Pulmonol. 2000;29(1):62–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Syken J, Shatz CJ. Expression of T cell receptor beta locus in central nervous system neurons. Proc Natl Acad Sci USA. 2003;100(22):13048–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Stanford Center for Sleep SciencesStanford University School of MedicinePalo AltoUSA

Personalised recommendations