Skip to main content

Cell Electropermeabilization and Cellular Uptake of Small Molecules: The Electrochemotherapy Concept

  • Chapter
  • First Online:

Abstract

The cell membrane is an impassable barrier for small hydrophilic molecules, termed ­nonpermeant, that are too hydrophilic for diffusing through the plasma membrane, and moreover are not recognized and internalized by a transporter, channel, or receptor system. Reversible cell electropermeabilization allows the cellular uptake of these nonpermeant small molecules. Studies demonstrating that bleomycin is a nonpermeant anticancer drug possessing a very high intrinsic cytotoxicity (the toxicity displayed when the drug has no biological barrier separating it from its target) have lead to the development of the electrochemotherapy concept. Indeed, cell electropermeabilization can increase bleomycin toxicity several thousand-fold in vitro and about thousand-fold in vivo. At the dosages used, bleomycin selectively kills the dividing cells by a mitotic cell death process. The physico-chemical bases reported in this chapter give light to the interesting aspects of the electrochemotherapy revealed and/or confirmed by the clinical trials, in particular, its efficacy and safety.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Orlowski S, Mir LM. Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim Biophys Acta. 1993;1154(1):51–63.

    CAS  PubMed  Google Scholar 

  2. Orlowski S, Belehradek Jr J, Paoletti C, Mir LM. Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem Pharmacol. 1988;37(24):4727–33.

    Article  CAS  PubMed  Google Scholar 

  3. Umezawa H, Maeda K, Takeuchi T, Okami Y. New antibiotics, bleomycin A and B. J Antibiot. 1966;19(5):200–9.

    CAS  PubMed  Google Scholar 

  4. Poddevin B, Orlowski S, Belehradek Jr J, Mir LM. Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture. Biochem Pharmacol. 1991;42(Suppl):S67–75.

    Article  CAS  PubMed  Google Scholar 

  5. Pron G, Belehradek Jr J, Mir LM. Identification of a plasma membrane protein that specifically binds bleomycin. Biochem Biophys Res Commun. 1993;194(1):333–7.

    Article  CAS  PubMed  Google Scholar 

  6. Pron G, Belehradek Jr J, Orlowski S, Mir LM. Involvement of membrane bleomycin-binding sites in bleomycin cytotoxicity. Biochem Pharmacol. 1994;48(2):301–10.

    Article  CAS  PubMed  Google Scholar 

  7. Pron G, Mahrour N, Orlowski S, et al. Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochem Pharmacol. 1999;57(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  8. van Deurs B, Sandvig K, Petersen OW, Olsnes S, Simons K, Griffiths G. Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J Cell Biol. 1988;106(2):253–67.

    Article  PubMed  Google Scholar 

  9. Simmons BM, Stahl PD, Russell JH. Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. Multiple intracellular pathways for a chain translocation. J Biol Chem. 1986;261(17):7912–20.

    CAS  PubMed  Google Scholar 

  10. van Deurs B, Pedersen LR, Sundan A, Olsnes S, Sandvig K. Receptor-mediated endocytosis of a ricin-colloidal gold conjugate in vero cells. Intracellular routing to vacuolar and tubulo-vesicular portions of the endosomal system. Exp Cell Res. 1985;159(2):287–304.

    Article  PubMed  Google Scholar 

  11. Mir LM, Bureau MF, Gehl J, et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA. 1999;96(8):4262–7.

    Article  CAS  PubMed  Google Scholar 

  12. Andre F, Gehl J, Sersa G, et al. Efficiency of high and low voltage pulse combinations for gene electrotransfer in muscle, liver, tumor and skin. Hum Gene Ther. 2008;19:1261–71.

    Article  CAS  PubMed  Google Scholar 

  13. Hojman P, Gissel H, Andre F, et al. Physiological effects of high and low voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther. 2008;19:1249–60.

    Article  CAS  PubMed  Google Scholar 

  14. Satkauskas S, Bureau MF, Puc M, et al. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther. 2002;5(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  15. Satkauskas S, Andre F, Bureau MF, Scherman D, Miklavcic D, Mir LM. Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum Gene Ther. 2005;16:1194–201.

    Article  CAS  PubMed  Google Scholar 

  16. Heller LC, Heller R. In vivo electroporation for gene therapy. Hum Gene Ther. 2006;17(9):890–7.

    Article  CAS  PubMed  Google Scholar 

  17. Daud AI, DeConti RC, Andrews S, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008;26(36):5896–903.

    CAS  PubMed  Google Scholar 

  18. Villemejane J, Mir LM. Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol. 2009;157:207–19.

    Article  CAS  PubMed  Google Scholar 

  19. Gehl J, Skovsgaard T, Mir LM. Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs. Anticancer Drugs. 1998;9(4):319–25.

    Article  CAS  PubMed  Google Scholar 

  20. Tounekti O, Kenani A, Foray N, Orlowski S, Mir LM. The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway. Br J Cancer. 2001;84(9):1272–9.

    Article  CAS  PubMed  Google Scholar 

  21. Marty M, Sersa G, Garbay JR, et al. Electrochemotherapy – an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of the ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Suppl. 2006;4(11):3–13.

    Article  CAS  Google Scholar 

  22. Gehl J, Skovsgaard T, Mir LM. Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta. 2002;1569(1–3):51–8.

    CAS  PubMed  Google Scholar 

  23. Mir LM, Orlowski S, Poddevin B, Belehradek Jr J. Electrochemotherapy tumor treatment is improved by interleukin-2 stimulation of the host’s defenses. Eur Cytokine Netw. 1992;3(3):331–4.

    CAS  PubMed  Google Scholar 

  24. Mir LM, Roth C, Orlowski S, et al. Systemic antitumor effects of electrochemotherapy combined with histoincompatible cells secreting interleukin-2. J Immunother Emphasis Tumor Immunol. 1995;17(1):30–8.

    CAS  PubMed  Google Scholar 

  25. Roux S, Bernat C, Al-Sakere B, et al. Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunol Immunother. 2008;57(9):1291–300.

    Article  CAS  PubMed  Google Scholar 

  26. Ramirez LH, Orlowski S, An D, et al. Electrochemotherapy on liver tumours in rabbits. Br J Cancer. 1998;77(12):2104–11.

    Article  CAS  PubMed  Google Scholar 

  27. Orlowski S, An D, Belehradek Jr J, Mir LM. Antimetastatic effects of electrochemotherapy and of histoincompatible interleukin-2-secreting cells in the murine Lewis lung tumor. Anticancer Drugs. 1998;9(6):551–6.

    Article  CAS  PubMed  Google Scholar 

  28. Andersen MH, Gehl J, Reker S, et al. Dynamic changes of specific T cell responses to melanoma correlate with IL-2 administration. Semin Cancer Biol. 2003;13(6):449–59.

    Article  CAS  PubMed  Google Scholar 

  29. Belehradek Jr J, Orlowski S, Ramirez LH, Pron G, Poddevin B, Mir LM. Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochim Biophys Acta. 1994;1190(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  30. Tounekti O, Pron G, Belehradek Jr J, Mir LM. Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res. 1993;53(22):5462–9.

    CAS  PubMed  Google Scholar 

  31. Miklavcic D, Semrov D, Mekid H, Mir LM. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta. 2000;1523(1):73–83.

    CAS  PubMed  Google Scholar 

  32. Poddevin B, Belehradek Jr J, Mir LM. Stable [57Co]-bleomycin complex with a very high specific radioactivity for use at very low concentrations. Biochem Biophys Res Commun. 1990;173(1):259–64.

    Article  CAS  PubMed  Google Scholar 

  33. Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J. In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol. 1998;16(2):168–71.

    Article  CAS  PubMed  Google Scholar 

  34. Mir LM, Banoun H, Paoletti C. Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp Cell Res. 1988;175(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  35. Engstrom PE, Persson BR, Salford LG. Studies of in vivo electropermeabilization by gamma camera measurements of (99m)Tc-DTPA. Biochim Biophys Acta. 1999;1473(2–3):321–8.

    CAS  PubMed  Google Scholar 

  36. Grafstrom G, Engstrom P, Salford LG, Persson BR. 99mTc-DTPA uptake and electrical impedance measurements in verification of in vivo electropermeabilization efficiency in rat muscle. Cancer Biother Radiopharm. 2006;21(6):623–35.

    Article  PubMed  Google Scholar 

  37. Gehl J, Mir LM. Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem Biophys Res Commun. 1999;261(2):377–80.

    Article  CAS  PubMed  Google Scholar 

  38. Gehl J, Sorensen TH, Nielsen K, et al. In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta. 1999;1428(2–3):233–40.

    CAS  PubMed  Google Scholar 

  39. Batiuskaite D, Cukjati D, Mir LM. Comparison of in vivo electropermeabilization of normal and malignant tissue using the 51Cr-EDTA uptake test. Biologija. 2003;2:45–7.

    Google Scholar 

  40. Cukjati D, Batiuskaite D, Andre F, Miklavcic D, Mir LM. Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry. 2007;70(2):501–7.

    Article  CAS  PubMed  Google Scholar 

  41. Susil R, Semrov D, Miklavcic D. Electric field induced transmembrane potential depends on cell density and organization. Electro Magnetobiol. 1998;17:391–9.

    Google Scholar 

  42. Pucihar G, Kotnik T, Teissie J, Miklavcic D. Electropermeabilization of dense cell suspensions. Eur Biophys J. 2007;36(3):173–85.

    Article  PubMed  Google Scholar 

  43. Domenge C, Orlowski S, Luboinski B, et al. Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer. 1996;77(5):956–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluis M. Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Silve, A., Mir, L.M. (2011). Cell Electropermeabilization and Cellular Uptake of Small Molecules: The Electrochemotherapy Concept. In: Kee, S., Gehl, J., Lee, E. (eds) Clinical Aspects of Electroporation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8363-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8363-3_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8362-6

  • Online ISBN: 978-1-4419-8363-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics