Skip to main content

Gene Electrotransfer to Muscle Tissue: Moving into Clinical Use

  • Chapter
  • First Online:
Clinical Aspects of Electroporation
  • 727 Accesses

Abstract

Electrotransfer has been proven as a unique method for gene delivery into tissues. Muscle tissue has been an attractive target due to high efficiency, long-term transgenic expression, and simplicity of the procedure. Gene transfer to muscle is interesting both for vaccination purposes, production of systemic proteins, as well as local correction of myopathies. During the last decade, a large volume of knowledge from rodent studies has accumulated. Presently, the field is moving towards experiments in larger animals and humans where seven clinical trials have been initiated so far. The present review will focus on the knowledge obtained from the preclinical and clinical studies, including the mechanisms and practical considerations when performing muscle electrotransfer both in animals and humans. In addition, the therapeutic applications of muscle electrotransfer will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gene Therapy Clinical Trials Worldwide. http://www.wiley.co.uk/wileychi/genmed/clinical/. 16th September 2009.

  2. Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek Jr J, Mir LM. Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer. 1993;72(12):3694–700.

    Article  CAS  PubMed  Google Scholar 

  3. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841–5.

    CAS  PubMed  Google Scholar 

  4. Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nat Biotechnol. 1998;16:867–70.

    Article  CAS  PubMed  Google Scholar 

  5. Mir LM, Bureau MF, Rangara R, Schwartz B, Scherman D. Long term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. C R Acad Sci Paris. 1998;321:893–9.

    CAS  PubMed  Google Scholar 

  6. Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J. In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol. 1998;16:168–71.

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki T, Shin B, Fujikura K, Matsuaki T, Takata K. Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett. 1998;425:436–40.

    Article  CAS  PubMed  Google Scholar 

  8. Mir LM, Moller PH, Andre F, Gehl J. Electric pulse-mediated gene delivery to various animal tissues. Adv Genet. 2005;54:83–114.

    Article  CAS  PubMed  Google Scholar 

  9. Favard C, Dean DS, Rols MP. Electrotransfer as a non viral method of gene delivery. Curr Gene Ther. 2007;7(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  10. Vaughan EE, Dean DA. Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol Ther. 2005;13(2):422–8.

    Article  PubMed  Google Scholar 

  11. Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA. 1999;96(8):4262–7.

    Article  CAS  PubMed  Google Scholar 

  12. Muramatsu T, Arakawa S, Fukazawa K, Fujiwara Y, Yishida T, Sasaki R, et al. In vivo gene electroporation in skeletal muscle with special reference to the duration of gene expression. Int J Mol Med. 2001;7(1):37–42.

    CAS  PubMed  Google Scholar 

  13. Mathiesen I. Electropermeabilisation of skeletal muscle enhances gene transfer in vivo. Gene Ther. 1999;6:508–14.

    Article  CAS  PubMed  Google Scholar 

  14. Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, et al. In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta. 1999;1428(2–3):233–40.

    CAS  PubMed  Google Scholar 

  15. Lu QL, Bou-Gharios G, Partridge TA. Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther. 2003;10:131–42.

    Article  CAS  PubMed  Google Scholar 

  16. Gehl J, Mir LM. Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem Biophys Res Com. 1999;261(2):377–80.

    Article  CAS  PubMed  Google Scholar 

  17. Gehl J, Skovsgaard T, Mir LM. Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta. 2002;1569(1–3):51–8.

    CAS  PubMed  Google Scholar 

  18. Khan AS, Pope MA, Draghia-Akli R. Highly efficient constant-current electroporation increases in vivo plasmid expression. DNA Cell Biol. 2005;24(12):810–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zampaglione I, Arcuri M, Cappelletti M, Ciliberto G, Perretta G, Nicosia A, et al. In vivo DNA gene electro-transfer: a systematic analysis of different electrical parameters. J Gene Med. 2005;7(11):1475–81.

    Article  CAS  PubMed  Google Scholar 

  20. Lucas ML, Heller R. Immunomodulation by electrically enhanced delivery of plasmid DNA encoding IL-12 to murine skeletal muscle. Mol Ther. 2001;3:47–53.

    Article  CAS  PubMed  Google Scholar 

  21. Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D, et al. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilisation and DNA electrophoresis. Mol Ther. 2002;5(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  22. Zaharoff DA, Barr RC, Li CY, Yaun F. Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene Ther. 2002;9:1286–90.

    Article  CAS  PubMed  Google Scholar 

  23. Andre F, Gehl J, Sersa G, Preat V, Hojman P, Eriksen J, et al. Efficiency of high and low voltage pulse combinations for gene electrotransfer in muscle, liver, tumor and skin. Hum Gene Ther. 2008;19(11):1261–71.

    Article  CAS  PubMed  Google Scholar 

  24. Pliquett U. Joule heating during solid tissue electroporation. Med Biol Eng Comput. 2003;41(2):215–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hojman P, Gissel H, Gehl J. Sensitive and precise regulation of haemoglobin after gene transfer of erythropoietin to muscle tissue using electroporation. Gene Ther. 2007;14(12):950–9.

    Article  CAS  PubMed  Google Scholar 

  26. Rizzuto G, Cappelletti M, Maione D, Savino R, Lazzaro D, Costa P, et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA. 1999;96:6417–22.

    Article  CAS  PubMed  Google Scholar 

  27. Payen E, Bettan M, Rouyer-Fessard P, Beuzard Y, Scherman D. Improvement of mouse [beta]-thalassemia by electrotransfer of erythropoietin cDNA. Exp Hematol. 2001;29(3):295–300.

    Article  CAS  PubMed  Google Scholar 

  28. Maruyama H, Sugawa M, Moriguchi Y, Imazeki I, Ishikawa Y, Ataka K, et al. Continuous erythropoietin delivery by muscle-targeted gene transfer using in vivo electroporation. Hum Gene Ther. 2000;11(3):429–37.

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Eastman EM, Schwartz RJ, Draghia-Akli R. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat Biotechnol. 1999;17(3):241–5.

    Article  CAS  PubMed  Google Scholar 

  30. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA. 1992;89:5547–51.

    Article  CAS  PubMed  Google Scholar 

  31. Draghia-Akli R, Pope MA, Brown PA, Khan AS. Plasmid-based expression technology using growth hormone releasing hormone: a novel method for physiologically stimulating long-term growth hormone secretion. Comb Chem High Throughput Screen. 2006;9:181–5.

    Article  CAS  PubMed  Google Scholar 

  32. Gasiorowski JZ, Dean DA. Intranuclear trafficking of episomal DNA is transcription-dependent. Mol Ther. 2007;15(12):2132–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gehl J. Electroporation for drug and gene delivery: doctors go electric. Methods Mol Biol. 2008;423:351-9.

    Google Scholar 

  34. Sallberg M, Frelin L, Diepolder HM, Jung MC, Mathiesen I, Kjeken R, et al. Activation of T cell responses and reductions in the viral load following therapeutic vaccination using naked DNA delivered by in vivo electroporation in patients with chronic hepatitis C. Mol Ther. 2009;17(1):S15.

    Google Scholar 

  35. Low L, Mander A, McCann KJ, Dearnaley D, Tjelle TE, Mathiesen I, et al. DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther. 2009;20(11):1269–78.

    Article  CAS  PubMed  Google Scholar 

  36. Hojman P, Gissel H, Andre F, Cournil-Henrionnet C, Eriksen J, Gehl J, et al. Physiological effects of high and low voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther. 2008;19(11):1249–61.

    Article  CAS  PubMed  Google Scholar 

  37. Hojman P, Zibert J, Gissel H, Eriksen J, Gehl J. Gene expression profiles in skeletal muscle after gene electrotransfer. BMC Mol Biol. 2007;8(1):56.

    Article  PubMed  Google Scholar 

  38. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.

    Article  CAS  PubMed  Google Scholar 

  39. Ataka K, Maruyama H, Neichi T, Miyazaki J, Gejko F. Effects of erythropoietin-gene electrotransfer in rats with adenine-induced renal failure. Am J Nephrol. 2003;23:315–23.

    Article  CAS  PubMed  Google Scholar 

  40. Kreiss P, Bettan M, Crouzet J, Scherman D. Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer. J Gene Med. 1999;1(4):245–50.

    Article  CAS  PubMed  Google Scholar 

  41. Rizzuto G, Cappelletti M, Mennuni C, Wiznerowicz M, DeMartis A, Maione D, et al. Gene electrotransfer results in a high-level transduction of rat skeletal muscle and corrects anemia of renal failure. Hum Gene Ther. 2000;11(13):1891–900.

    Article  CAS  PubMed  Google Scholar 

  42. Samakoglu S, Fattori E, Lamartina S, Toniatti C, Stockholm D, Heard JM, et al. betaMinor-globin messenger RNA accumulation in reticulocytes governs improved erythropoiesis in beta thalassemic mice after erythropoietin complementary DNA electrotransfer in muscles. Blood. 2001;97(8):2213–20.

    Article  CAS  PubMed  Google Scholar 

  43. Long YC, Jaichandran S, Ho LP, Tien SL, Tan SY, Kon OL. FVIII gene delivery by muscle electroporation corrects murine hemophilia A. J Gene Med. 2006;7:494–505.

    Article  Google Scholar 

  44. Fewell JG, MacLaughlin F, Mehta V, Gondo M, Nicol F, Wilson E, et al. Gene therapy for the treatment of hemophilia B using PINC-formulated plasmid delivered to muscle with electroporation. Mol Ther. 2001;3(4):574–83.

    Article  CAS  PubMed  Google Scholar 

  45. Lee SC, Wu CJ, Wu PY, Huang YL, Wu CW, Tao MH. Inhibition of established subcutaneous and metastatic murine tumors by intramuscular electroporation of the interleukin-12 gene. J Biomed Sci. 2003;10(1):73–86.

    Article  CAS  PubMed  Google Scholar 

  46. Lucas ML, Heller L, Coppola D, Heller R. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther. 2002;5(6):668–75.

    Article  CAS  PubMed  Google Scholar 

  47. Li S, Zhang X, Xia X, Zhou L, Breau R, Suen J, et al. Intramuscular electroporation delivery of IFN-alpha gene therapy for inhibition of tumor growth located at a distant site. Gene Ther. 2001;8(5):400–7.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang GH, Tan XF, Shen D, Zhao SY, Shi YL, Jin CK, et al. Gene expression and antitumor effect following im electroporation delivery of human interferon alpha 2 gene. Acta Pharmacol Sin. 2003;24(9):891–6.

    CAS  PubMed  Google Scholar 

  49. Aurisicchio L, Ceccacci A, La Monica N, Palombo F, Traboni C. Tamarin alpha-interferon is active in mouse liver upon intramuscular gene delivery. J Gene Med. 2001;3(4):394–402.

    Article  CAS  PubMed  Google Scholar 

  50. Martel-Renoir D, Trochon-Joseph V, Galaup A, Bouquet C, Griscelli F, Opolon P, et al. Coelectrotransfer to skeletal muscle of three plasmids coding for antiangiogenic factors and regulatory factors of the tetracycline-inducible system: tightly regulated expression, inhibition of transplanted tumor growth, and antimetastatic effect. Mol Ther. 2003;8(3):425–33.

    Article  CAS  PubMed  Google Scholar 

  51. Trochon-Joseph V, Martel-Renoir D, Mir LM, Thomaidis A, Opolon P, Connault E, et al. Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res. 2004;64(6):2062–9.

    Article  CAS  PubMed  Google Scholar 

  52. Trollet C, Bloquel C, Scherman D, Bigey P. Electrotransfer into skeletal muscle for protein expression. Curr Gene Ther. 2006;6(5):561–78.

    Article  CAS  PubMed  Google Scholar 

  53. Prud’homme GJ, Glinka Y, Khan AS, Draghia-Akli R. Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther. 2006;6(2):243–73.

    Article  PubMed  Google Scholar 

  54. Murakami T, Nishi T, Kimura E, Goto T, Maeda Y, Ushio Y, et al. Full-length dystrophin cDNA transfer into skeletal muscle of adult mdx mice by electroporation. Muscle Nerve. 2003;27(2):237–41.

    Article  CAS  PubMed  Google Scholar 

  55. Vilquin JT, Kennel PF, Paturneau-Jouas M, Chapdelaine P, Boissel N, Delaère P, et al. Electrotransfer of naked DNA in the skeletal muscles of animal models of muscular dystrophies. Gene Ther. 2001;8:1097–107.

    Article  CAS  PubMed  Google Scholar 

  56. Gollins H, McMahon J, Wells KE, Wells DJ. High-efficiency plasmid gene transfer into dystrophic muscle. Gene Ther. 2003;10:504–12.

    Article  CAS  PubMed  Google Scholar 

  57. Wells KE, Fletcher S, Mann CJ, Wilton SD, Wells DJ. Enhanced in vivo delivery of antisense oligonucleotides to restore dystrophin expression in adult mdx mouse muscle. FEBS Lett. 2003;552(2–3):145–9.

    Article  CAS  PubMed  Google Scholar 

  58. Takahashi T, Ishida K, Itoh K, Konishi Y, Yagyu K, Tominaga A, et al. IGF-I gene transfer by electroporation promotes regeneration in a muscle injury model. Genesis. 2003;10:612–20.

    CAS  Google Scholar 

  59. Rabinovsky ED, Draghia-Akli R. Insulin-like growth factor I plasmid therapy promotes in vivo angiogenesis. Mol Ther. 2004;9(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  60. Schertzer JD, Plant DR, Lynch GS. Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function. Mol Ther. 2006;13(4):795–803.

    Article  CAS  PubMed  Google Scholar 

  61. Sacco A, Doyonnas R, LaBarge MA, Hammer MM, Kraft P, Blau HM. IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. J Cell Biol. 2005;171(3):483–92.

    Article  CAS  PubMed  Google Scholar 

  62. Schakman O, Gilson H, de Coninck V, Lause P, Verniers J, Havaux X, et al. Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats. Endocrinology. 2005;146(4):1789–97.

    Article  CAS  PubMed  Google Scholar 

  63. Alzghoul MB, Gerrard D, Watkins BA, Hannon K. Ectopic expression of IGF-I and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo. FASEB J. 2003;18(1):221–3.

    PubMed  Google Scholar 

  64. Ekmark M, Gronevik E, Schjerling P, Gundersen K. Myogenin induces higher oxidative capacity in pre-existing mouse muscle fibres after somatic DNA transfer. J Physiol (Lond). 2003;548(1):259–69.

    Article  CAS  Google Scholar 

  65. Kramer HF, Witczak CA, Taylor EB, Fujii N, Hirshman MF, Goodyear LJ. AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. J Biol Chem. 2006;281(42):31478–85.

    Article  CAS  PubMed  Google Scholar 

  66. Cleasby ME, Davey JR, Reinten TA, Graham MW, James DE, Kraegen EW, et al. Acute bidirectional manipulation of muscle glucose uptake by in vivo electrotransfer of constructs targeting glucose transporter genes. Diabetes. 2005;54(9):2702–11.

    Article  CAS  PubMed  Google Scholar 

  67. Bruce CR, Brolin C, Turner N, Cleasby ME, van der Leij FR, Cooeny GJ, et al. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification. Am J Physiol Endocrinol Metab. 2007;292:E1231–7.

    Article  CAS  PubMed  Google Scholar 

  68. Roorda BD, Hesselink MKC, Schaart G, Moonen-Kornips E, Martinez-Martinez P, Losen M, et al. DGAT1 overexpression in muscle by in vivo DNA electroporation increases intramyocellular lipid content. J Lipid Res. 2005;46(2):230–6.

    Article  CAS  PubMed  Google Scholar 

  69. Ban A, Yamanouchi K, Matsuwaki T, Nishihara M. In vivo gene transfer of PPARγ is insufficient to induce adipogenesis in skeletal muscle. J Vet Med Sci. 2008;70(8):761–7.

    Article  CAS  PubMed  Google Scholar 

  70. Shi H, Scheffler JM, Pleitner JM, Zeng C, Park S, Hannon KM, et al. Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling. FASEB J. 2008;22(8):2990–3000.

    Article  CAS  PubMed  Google Scholar 

  71. Ekmark M, Gronevik E, Schjerling P, Gundersen K. Myogenin induces higher oxidative capacity in pre-existing mouse muscle fibres after somatic DNA transfer. J Physiol Online. 2003;548(1):259–69.

    Article  CAS  Google Scholar 

  72. Nielsen AR, Hojman P, Erikstrup C, Fischer CP, Plomgaard P, Mounier R, et al. Association between IL-15 and obesity: IL-15 as a potential regulator of fat mass. J Clin Endocrinol Metab. 2008;98:4486–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pernille Hojman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hojman, P. (2011). Gene Electrotransfer to Muscle Tissue: Moving into Clinical Use. In: Kee, S., Gehl, J., Lee, E. (eds) Clinical Aspects of Electroporation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8363-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8363-3_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8362-6

  • Online ISBN: 978-1-4419-8363-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics