Skip to main content

Introduction to Electroporation

  • Chapter
  • First Online:

Abstract

Electroporation refers to the ability of electric fields to cause the formation of reversible or irreversible pores in the membranes of cells. Reversible electroporation (RE) is now in widespread use as a method of delivering chemicals and large molecules to cells, both as a research tool and a clinical technique. Recently, irreversible electroporation (IRE) has garnered interest as a stand-alone ablation device that may have a role in the treatment of various cancers. This book attempts to illustrate the current state of the art of electroporation and authors a number of areas of growing interest currently being studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bertacchini C, Margotti PM, Bergamini E, Lodi A, Ronchetti M, Cadossi R. Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat. 2007;6:313–20.

    PubMed  Google Scholar 

  2. Rubinsky B. Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007;6:255–60.

    PubMed  Google Scholar 

  3. Crowley JM. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys J. 1973;13:711–24.

    Article  PubMed  CAS  Google Scholar 

  4. Zimmermann U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes. Biophys J. 1974;14:881–99.

    Article  PubMed  CAS  Google Scholar 

  5. Kinosita Jr K, Tsong TT. Hemolysis of human erythrocytes by transient electric field. Proc Natl Acad Sci USA. 1977;74:1923–7.

    Article  PubMed  CAS  Google Scholar 

  6. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1:841–5.

    PubMed  CAS  Google Scholar 

  7. Wong TK, Neumann E. Electric field mediated gene transfer. Biochem Biophys Res Commun. 1982;107:584–7.

    Article  PubMed  CAS  Google Scholar 

  8. Orlowski S, Mir LM. Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim Biophys Acta. 1993;1154:51–63.

    PubMed  CAS  Google Scholar 

  9. Weaver JC. Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem. 1993;51:426–35.

    PubMed  CAS  Google Scholar 

  10. Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek Jr J, Mir LM. Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer. 1993;72:3694–700.

    Article  PubMed  CAS  Google Scholar 

  11. Nanda GS, Sun FX, Hofmann GA, Hoffman RM, Dev SB. Electroporation therapy of human larynx tumors HEp-2 implanted in nude mice. Anticancer Res. 1998;18:999–1004.

    PubMed  CAS  Google Scholar 

  12. Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177:437–47.

    Article  PubMed  CAS  Google Scholar 

  13. Gothelf A, Mir LM, Gehl J. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev. 2003;29:371–87.

    Article  PubMed  CAS  Google Scholar 

  14. Bloquel C, Fabre E, Bureau MF, Scherman D. Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med. 2004;6 Suppl 1:S11–23.

    Article  PubMed  CAS  Google Scholar 

  15. Maxim PG, Carson JJ, Ning S, et al. Enhanced effectiveness of radiochemotherapy with tirapazamine by local application of electric pulses to tumors. Radiat Res. 2004;162:185–93.

    Article  PubMed  CAS  Google Scholar 

  16. Doevenspeck H. Influencing cells and cell walls by electrostatic impulses. Fleishwirtshaft. 1961;13:986–7.

    Google Scholar 

  17. Lee RC, Kolodney MS. Electrical injury mechanisms: electrical breakdown of cell membranes. Plast Reconstr Surg. 1987;80:672–9.

    Article  PubMed  CAS  Google Scholar 

  18. Lee RC, Kolodney MS. Electrical injury mechanisms: dynamics of the thermal response. Plast Reconstr Surg. 1987;80:663–71.

    Article  PubMed  CAS  Google Scholar 

  19. Lee EW, Chen C, Prieto VE, Dry SM, Loh CT, Kee ST. Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology. 2010;255:426–33.

    Article  PubMed  Google Scholar 

  20. Mir LM, Morsli N, Garbay JR, Billard V, Robert C, Marty M. Electrochemotherapy: a new treatment of solid tumors. J Exp Clin Cancer Res. 2003;22:145–8.

    PubMed  CAS  Google Scholar 

  21. Neal 2nd RE, Singh R, Hatcher HC, Kock ND, Torti SV, Davalos RV. Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res Treat. 2009;123:295–301.

    Article  Google Scholar 

  22. Onik G, Mikus P, Rubinsky B. Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat. 2007;6:295–300.

    PubMed  Google Scholar 

  23. Rubinsky J, Onik G, Mikus P, Rubinsky B. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J Urol. 2008;180:2668–74.

    Article  PubMed  Google Scholar 

  24. Ellis TL, Garcia PA, Rossmeisl JH, Henao-Guerrero N, Robertson J, Davalos RV. Nonthermal irreversible electroporation for intracranial surgical applications. J Neurosurg. 2010.

    Google Scholar 

  25. Charpentier KP, Wolf F, Noble L, Winn B, Resnick M, Dupuy DE. Irreversible electroporation of the pancreas in swine: a pilot study. HPB (Oxford). 2010;12:348–51.

    Google Scholar 

  26. Lee EW, Loh CT, Kee ST. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat. 2007;6:287–94.

    PubMed  Google Scholar 

  27. Carey RI, Leveillee RJ. First prize: direct real-time temperature monitoring for laparoscopic and CT-guided radiofrequency ablation of renal tumors between 3 and 5 cm. J Endourol. 2007;21:807–13.

    Article  PubMed  Google Scholar 

  28. Mast TD, Pucke DP, Subramanian SE, Bowlus WJ, Rudich SM, Buell JF. Ultrasound monitoring of in vitro radio frequency ablation by echo decorrelation imaging. J Ultrasound Med. 2008;27:1685–97.

    PubMed  Google Scholar 

  29. Granot Y, Ivorra A, Maor E, Rubinsky B. In vivo imaging of irreversible electroporation by means of electrical impedance tomography. Phys Med Biol. 2009;54:4927–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward W. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, E.W., Gehl, J., Kee, S.T. (2011). Introduction to Electroporation. In: Kee, S., Gehl, J., Lee, E. (eds) Clinical Aspects of Electroporation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8363-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8363-3_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8362-6

  • Online ISBN: 978-1-4419-8363-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics