Advertisement

Familial Models for Binary Data

  • Brajendra C. Sutradhar
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

As opposed to Chapter 4, we now consider y ij as the binary response for the jth (j = 1, …,ni) member of the ith (i = 1, …,K) family/cluster. Suppose that x ij = (x ij1 , …,x ijp )′ is the p-dimensional covariate vector associated with the binary response y ij . For example, in a chronic obstructive pulmonary disease (COPD) study, y ij denotes the impaired pulmonary function (IPF) status (yes or no), and x ij is the vector of covariates such as gender, race, age, and smoking status, for the jth sibling of the ith COPD patient. Note that in this problem it is likely that the IPF status for n i siblings of the ith patient may be influenced by an unobservable random effect (γi) due to the ith COPD patient.

Keywords

Chronic Obstructive Pulmonary Disease Chronic Obstructive Pulmonary Disease Patient Generalize Linear Mixed Model Binary Data Asymptotic Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breslow, N, E. & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. J. Amer. Stat. Assoc., 88, 9−25.MATHCrossRefGoogle Scholar
  2. 2.
    Cohen, B. H. (1980). Chronic obstructive pulmonary disease: A challenge in genetic epidemiology. Am. J. Epidemiol., 112, 274−288.Google Scholar
  3. 3.
    Ekholm, A., Smith, P. W. F., and McDonald, J. W. (1995). Marginal regression analysis of a multivariate binary response. Biometrika, 82, 847−854.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Jiang, J. (1998). Consistent estimators in generalized linear mixed models. J. Amer. Statist. Assoc., 93, 720−729.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jiang, J. & Zhang, W. (2001). Robust estimation in generalized linear mixed models. Biometrika, 88, 753−765.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Karim, M. R. & Zeger, S. L. (1992). Generalized linear models with random effects: Salamander mating revisited. Biometrics, 48, 631−644.CrossRefGoogle Scholar
  7. 7.
    Kuk, A. Y. C. (1995). Asymptotically unbiased estimation in generalized linear models with random effects. J. R. Statist. Soc. B, 58, 619−678.Google Scholar
  8. 8.
    Lee, Y. & Nelder, J. (1996). Hierarchical generalized linear models. J. R. Statist. Soc. B, 58, 619−678.MATHMathSciNetGoogle Scholar
  9. 9.
    Lin, X. & Breslow, N. E. (1996). Bias correction in generalized linear mixed models with multiple components of dispersion. J. Am. Statist. Assoc., 91, 1007−1016.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Liang, K.-Y., Zeger, S. L., and Qaqish, B. (1992), Multivariate Regression Analysis for Categorical Data. J. Roy. Statist. Soc. Ser. B, 54, 3−40.MATHMathSciNetGoogle Scholar
  11. 11.
    Mardia, K. V., Kent. J. T. & Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press Inc..Google Scholar
  12. 12.
    McCullagh, P., & Nelder, J. A. (1989), Generalized Linear Models (2nd ed.). London: Chapman and Hall.Google Scholar
  13. 13.
    McGilchrist, C. A. (1994). Estimation in generalised linear mixed models. J. R. Statist. Soc. B, 56, 61−69.MATHMathSciNetGoogle Scholar
  14. 14.
    Schall, R. (1991). Estimation in generalized linear models with random effects. Biometrika, 78, 719−27.MATHCrossRefGoogle Scholar
  15. 15.
    Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses. Statist. Sci., 18, 377−393.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sutradhar, B. C. (2004). On exact quasilikelihood inference in generalized linear mixed models. Sankhya, 66, 261−289.MathSciNetGoogle Scholar
  17. 17.
    Sutradhar, B. C. & Mukerjee, R. (2005). On likelihood inference in binary mixed model with an application to COPD data. Computat. Statist. Data Anal., 48, 345−361.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sutradhar, B. C. & Rao, R. Prabhakar (2001). On marginal quasi-likelihood inference in generalized linear mixed models. J. Multivar. Anal., 76, 1−34.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sutradhar, B. C. & Rao, R. Prabhakar (2003). On quasilikelihood inference in generalized linear mixed models with two variance components. Canad. J. Statist., 31, 415−435.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ten Have, T. R. & Morabia, A. (1999). Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data. Biometrics, 55, 85−93.MATHCrossRefGoogle Scholar
  21. 21.
    Zeger, S. L., Liang, K.-Y., and Albert, P. S. (1988). Models for Longitudinal Data: A Generalized Estimating Equation Approach. Biometrics, 44, 1049−1060.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial UniversitySaint John’sCanada

Personalised recommendations