Skip to main content

Portal Hypertension: Extrahepatic Mechanisms

  • Chapter
  • First Online:
Vascular Liver Disease
  • 1412 Accesses

Abstract

The primary event leading to portal hypertension in liver cirrhosis is increased hepatic resistance. However, portal hypertension induces marked alterations in the systemic and splanchnic circulation that result in an increase in portal blood inflow that maintains and aggravates portal hypertension. These include a decrease in systemic vascular resistance, arterial hypotension, increased cardiac output, and plasma volume expansion and are collectively known as the hyperdynamic circulatory state. This chapter provides an overview of the contribution of splanchnic and systemic circulatory abnormalities to the pathogenesis of portal hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosch J, Abraldes JG, Berzigotti A, et al. The clinical use of HVPG measurements in chronic liver disease. Nat Rev Gastroenterol Hepatol. 2009;6:576–82.

    Article  Google Scholar 

  2. Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology. 1984;87:1120–3.

    PubMed  CAS  Google Scholar 

  3. Witte CL, Tobin GR, Clark DS, et al. Relationship of splanchnic blood flow and portal venous resistance to elevated portal pressure in the dog. Gut. 1976;17:122–6.

    Article  PubMed  CAS  Google Scholar 

  4. Groszmann RJ, Vorobioff J, Riley E. Splanchnic hemodynamics in portal-hypertensive rats: measurement with gamma-labeled microspheres. Am J Physiol. 1982;242:G156–60.

    PubMed  CAS  Google Scholar 

  5. Vorobioff J, Bredfeldt J, Groszmann RJ, et al. Hyperdynamic circulation in a portal hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol. 1983;244:G52–6.

    PubMed  CAS  Google Scholar 

  6. Bosch J, Abraldes JG, Berzigotti A, et al. Portal hypertension and gastrointestinal bleeding. Semin Liver Dis. 2008;28:3–25.

    Article  PubMed  CAS  Google Scholar 

  7. Groszmann RJ. Hyperdynamic circulation of liver disease 40 years later: pathophysiology and clinical consequences. Hepatology. 1994;20:1359–63.

    Article  PubMed  CAS  Google Scholar 

  8. Fernandez M, Mejias M, Angermayr B, et al. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43:98–103.

    Article  PubMed  CAS  Google Scholar 

  9. Benoit JN, Barrowman JA, Harper SL, et al. Role of humoral factors in the intestinal hyperemia associated with chronic portal hypertension. Am J Physiol. 1984;247:G486–93.

    PubMed  CAS  Google Scholar 

  10. Kravetz D, Bosch J, Arderiu MT, et al. Effects of somatostatin on splanchnic hemodynamics and plasma glucagon in portal hypertensive rats. Am J Physiol. 1988;254:G322–8.

    PubMed  CAS  Google Scholar 

  11. Silva G, Navasa M, Bosch J, et al. Hemodynamic effects of glucagon in portal hypertension. Hepatology. 1990;11:668–73.

    Article  PubMed  CAS  Google Scholar 

  12. Pizcueta MP, Garcia-Pagan JC, Fernandez M, et al. Glucagon hinders the effects of somatostatin on portal hypertension. A study in rats with partial portal vein ligation. Gastroenterology. 1991;101:1710–5.

    PubMed  CAS  Google Scholar 

  13. Benoit JN, Granger DN. Splanchnic hemodynamics in chronic portal hypertension. Semin Liver Dis. 1986;6:287–98.

    Article  PubMed  CAS  Google Scholar 

  14. Gomis R, Fernandez-Alvarez J, Pizcueta P, et al. Impaired function of pancreatic islets from rats with portal hypertension resulting from cirrhosis and partial portal vein ligation. Hepatology. 1994;19:1257–61.

    Article  PubMed  CAS  Google Scholar 

  15. Albillos A, Rossi I, Iborra J, et al. Octreotide prevents postprandial splanchnic hyperemia in patients with portal hypertension. J Hepatol. 1994;21:88–94.

    Article  PubMed  CAS  Google Scholar 

  16. Abraldes JG, Bosch J. Somatostatin and analogues in portal hypertension. Hepatology. 2002;35:1305–12.

    Article  PubMed  CAS  Google Scholar 

  17. Wiest R, Tsai MH, Groszmann RJ. Octreotide potentiates PKC-dependent vasoconstrictors in portal- hypertensive and control rats. Gastroenterology. 2001;120:975–83.

    Article  PubMed  CAS  Google Scholar 

  18. Batkai S, Jarai Z, Wagner JA, et al. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med. 2001;7:827–32.

    Article  PubMed  CAS  Google Scholar 

  19. Ros J, Claria J, To-Figueras J, et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology. 2002;122:85–93.

    Article  PubMed  CAS  Google Scholar 

  20. Domenicali M, Ros J, Fernandez-Varo G, et al. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. Gut. 2005;54:522–7.

    Article  PubMed  CAS  Google Scholar 

  21. Varga K, Wagner JA, Bridgen DT, et al. Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J. 1998;12:1035–44.

    PubMed  CAS  Google Scholar 

  22. Hori N, Okanoue T. SYKK. Role of calcitonin gene-related peptide in the vascular system on the development of the hyperdynamic circulation in conscious cirrhotic rats. Hepatology. 1997;1999(26):1111–9.

    Google Scholar 

  23. Fernandez-Rodriguez CM, Prada IR, Prieto J, et al. Circulating adrenomedullin in cirrhosis: relationship to hyperdynamic circulation. J Hepatol. 1998;29:250–6.

    Article  PubMed  CAS  Google Scholar 

  24. Genesca J, Gonzalez A, Catalan R, et al. Adrenomedullin, a vasodilator peptide implicated in hemodynamic alterations of liver cirrhosis: relationship to nitric oxide. Dig Dis Sci. 1999;44:372–6.

    Article  PubMed  CAS  Google Scholar 

  25. Trebicka J, Leifeld L, Hennenberg M, et al. Hemodynamic effects of urotensin II and its specific receptor antagonist palosuran in cirrhotic rats. Hepatology. 2008;47:1264–76.

    Article  PubMed  CAS  Google Scholar 

  26. Vallance P, Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet. 1991;337:776.

    Article  PubMed  CAS  Google Scholar 

  27. Pizcueta P, Piqué JM, Fernández M, et al. Modulation of the hyperdynamic circulation of cirrhotic rats by nitric oxide inhibition. Gastroenterology. 1992;103:1909–15.

    PubMed  CAS  Google Scholar 

  28. Pizcueta MP, Piqué JM, Bosch J, et al. Effects of inhibiting nitric oxide biosynthesis on the systemic and splanchnic circulation of rats with portal hypertension. Br J Pharmacol. 1992;105:105–84.

    Article  Google Scholar 

  29. Guarner C, Soriano G, Tomas A, et al. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology. 1993;18:1139–43.

    Article  PubMed  CAS  Google Scholar 

  30. Hori N, Wiest R, Groszmann RJ. Enhanced release of nitric oxide in response to changes in flow and shear stress in the superior mesenteric arteries of portal hypertensive rats. Hepatology. 1998;28:1467–73.

    Article  PubMed  CAS  Google Scholar 

  31. Lee FY, Colombato LA, Albillos A, et al. Administration of N omega-nitro-l-arginine ameliorates portal-systemic shunting in portal-hypertensive rats. Gastroenterology. 1993;105:1464–70.

    Article  PubMed  CAS  Google Scholar 

  32. García-Pagán JC, Fernandez M, Bernadich C, et al. Effects of continued nitric oxide inhibition on the development of the portal hypertnesive syndrome following portal vein stenosis in the rat. Am J Physiol. 1994;30:984–90.

    Google Scholar 

  33. Iwakiri Y, Cadelina G, Sessa WC, et al. Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1074–81.

    PubMed  CAS  Google Scholar 

  34. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35:478–91.

    Article  PubMed  CAS  Google Scholar 

  35. Jurzik L, Froh M, Straub RH, et al. Up-regulation of nNOS and associated increase in nitrergic vasodilation in superior mesenteric arteries in pre-hepatic portal hypertension. J Hepatol. 2005;43:258–65.

    Article  PubMed  CAS  Google Scholar 

  36. Kwon SY, Groszmann RJ, Iwakiri Y. Increased neuronal nitric oxide synthase interaction with soluble guanylate cyclase contributes to the splanchnic arterial vasodilation in portal hypertensive rats. Hepatol Res. 2007;37:58–67.

    Article  PubMed  CAS  Google Scholar 

  37. Sessa WC. eNOS at a glance. J Cell Sci. 2004;117:2427–9.

    Article  PubMed  CAS  Google Scholar 

  38. Wiest R, Das S, Cadelina G, et al. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J Clin Invest. 1999;104:1223–33.

    Article  PubMed  CAS  Google Scholar 

  39. Wiest R, Cadelina G, Milstien S, et al. Bacterial translocation up-regulates GTP-cyclohydrolase I in mesenteric vasculature of cirrhotic rats. Hepatology. 2003;38:1508–15.

    PubMed  CAS  Google Scholar 

  40. Bernadich C, Bandi JC, Piera C, et al. Circulatory effects of graded diversion of portal blood flow to the systemic circulation in rats: role of nitric oxide. Hepatology. 1997;26:262–7.

    Article  PubMed  CAS  Google Scholar 

  41. Bandi JC, Fernandez M, Bernadich C, et al. Hyperkinetic circulation and decreased sensitivity to vasoconstrictors following portacaval shunt in the rat. Effects of chronic nitric oxide inhibition. J Hepatol. 1999;31:719–24.

    Article  PubMed  CAS  Google Scholar 

  42. Wiest R, Shah V, Sessa WC, et al. NO overpro duction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. Am J Physiol. 1999;276:G1043–51.

    PubMed  CAS  Google Scholar 

  43. Tsai MH, Iwakiri Y, Cadelina G, et al. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology. 2003;125:1452–61.

    Article  PubMed  CAS  Google Scholar 

  44. Abraldes JG, Iwakiri Y, Loureiro-Silva M, et al. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Physiol Gastrointest Liver Physiol. 2006;290:G980–7.

    Article  PubMed  CAS  Google Scholar 

  45. Iwakiri Y, Tsai MH, McCabe TJ, et al. Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol Heart Circ Physiol. 2002;282:H2084–90.

    PubMed  CAS  Google Scholar 

  46. Shah V, Wiest R, Garcia-Cardena G, et al. Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol. 1999;277:G463–8.

    PubMed  CAS  Google Scholar 

  47. Groszmann RJ. Beta-adrenergic blockers and nitrovasodilators for the treatment of portal hypertension: the good, the bad, the ugly. Gastroenterology. 1997;113:1794–7.

    Article  PubMed  CAS  Google Scholar 

  48. Loureiro-Silva MR, Cadelina GW, Iwakiri Y, et al. A liver-specific nitric oxide donor improves the intra-hepatic vascular response to both portal blood flow increase and methoxamine in cirrhotic rats. J Hepatol. 2003;39:940–6.

    Article  PubMed  CAS  Google Scholar 

  49. Fiorucci S, Antonelli E, Brancaleone V, et al. NCX-1000, a nitric oxide-releasing derivative of ursodeoxycholic acid, ameliorates portal hypertension and lowers norepinephrine-induced intrahepatic resistance in the isolated and perfused rat liver. J Hepatol. 2003;39:932–9.

    Article  PubMed  CAS  Google Scholar 

  50. Abraldes JG, Rodriguez-Vilarrupla A, Graupera M, et al. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4 cirrhotic rats. J Hepatol. 2007;46:1040–6.

    Article  PubMed  CAS  Google Scholar 

  51. Abraldes JG, Albillos A, Banares R, et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology. 2009;136:1651–8.

    Article  PubMed  CAS  Google Scholar 

  52. Guarner C, Soriano G, Such J, et al. Systemic prostacyclin in cirrhotic patients. Relationship with portal hypertension and changes after intestinal decontamination [see comments]. Gastroenterology. 1992;102:303–9.

    PubMed  CAS  Google Scholar 

  53. Sitzmann JV, Bulkley GB. Role of prostacyclin in the splanchnic hyperemia contributing to portal hypertension. Ann Surg. 1989;209:322–7.

    Article  PubMed  CAS  Google Scholar 

  54. Potenza MA, Botrugno OA, De Salvia MA, et al. Endothelial COX-1 and -2 differentially affect reactivity of MVB in portal hypertensive rats. Am J Physiol Gastrointest Liver Physiol. 2002;283:G587–94.

    PubMed  CAS  Google Scholar 

  55. Fernandez M, Garcia-Pagan JC, Casadevall M, et al. Acute and chronic cyclooxygenase blockade in portal hypertensive rats. Influence on nitric oxide biosynthesis. Gastroenterology. 1996;110:1529–35.

    Article  PubMed  CAS  Google Scholar 

  56. Bruix J, Bosch J, Kravetz D, et al. Effects of prostaglandin inhibition on systemic and hepatic hemodynamics in patients with cirrhosis of the liver. Gastroenterology. 1985;88:430–5.

    PubMed  CAS  Google Scholar 

  57. Naik JS, O’Donaughy TL, Walker BR. Endogenous carbon monoxide is an endothelial-derived vasodilator factor in the mesenteric circulation. Am J Physiol Heart Circ Physiol. 2003;284:H838–45.

    PubMed  CAS  Google Scholar 

  58. Chen YC, Gines P, Yang J, et al. Increased vascular heme oxygenase-1 expression contributes to arterial vasodilation in experimental cirrhosis in rats. Hepatology. 2004;39:1075–87.

    Article  PubMed  CAS  Google Scholar 

  59. Fernandez M, Lambrecht RW, Bonkovsky HL. Increased heme oxygenase activity in splanchnic organs from portal hypertensive rats: role in modulating mesenteric vascular reactivity. J Hepatol. 2001;34:812–7.

    Article  PubMed  CAS  Google Scholar 

  60. Angermayr B, Mejias M, Gracia-Sancho J, et al. Heme oxygenase attenuates oxidative stress and inflammation, and increases VEGF expression in portal hypertensive rats. J Hepatol. 2006;44:1033–9.

    Article  PubMed  CAS  Google Scholar 

  61. Albillos A, Colombato LA, Groszmann RJ. Vasodilatation and sodium retention in prehepatic portal hypertension [see comments]. Gastroenterology. 1992;102:931–5.

    PubMed  CAS  Google Scholar 

  62. Colombato LA, Albillos A, Groszmann RJ. The role of central blood volume in the development of sodium retention in portal hypertensive rats. Gastroenterology. 1996;110:193–8.

    Article  PubMed  CAS  Google Scholar 

  63. Garcia-Pagan JC, Salmeron JM, Feu F, et al. Effects of low-sodium diet and spironolactone on portal pressure in patients with compensated cirrhosis. Hepatology. 1994;19:1095–9.

    PubMed  CAS  Google Scholar 

  64. Fernandez M, Vizzutti F, Garcia-Pagan JC, et al. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology. 2004;126:886–94.

    Article  PubMed  CAS  Google Scholar 

  65. Sieber CC, Sumanovski LT, Stumm M, et al. In vivo angiogenesis in normal and portal hypertensive rats: role of basic fibroblast growth factor and nitric oxide. J Hepatol. 2001;34:644–50.

    Article  PubMed  CAS  Google Scholar 

  66. Angermayr B, Fernandez M, Mejias M, et al. NAD(P)H oxidase modulates angiogenesis and the development of portosystemic collaterals and splanchnic hyperaemia in portal hypertensive rats. Gut. 2006;56(4):560–4.

    Article  PubMed  Google Scholar 

  67. Fernandez M, Mejias M, Garcia-Pras E, et al. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology. 2007;46:1208–17.

    Article  PubMed  CAS  Google Scholar 

  68. Mejias M, Garcia-Pras E, Tiani C, et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology. 2009;49:1245–56.

    Article  PubMed  CAS  Google Scholar 

  69. Tiani C, Garcia-Pras E, Mejias M, et al. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol. 2009;50:296–305.

    Article  PubMed  CAS  Google Scholar 

  70. Mosca P, Lee FY, Kaumann AJ, et al. Pharmacology of portal-systemic collaterals in portal hypertensive rats: role of endothelium. Am J Physiol. 1992;263:G544–50.

    PubMed  CAS  Google Scholar 

  71. Chan CC, Wang SS, Lee FY, et al. Endothelin-1 induces vasoconstriction on portal-systemic collaterals of portal hypertensive rats. Hepatology. 2001;33:816–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Bosch, J., Abraldes, J.G. (2011). Portal Hypertension: Extrahepatic Mechanisms. In: DeLeve, L., Garcia-Tsao, G. (eds) Vascular Liver Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8327-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8327-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8326-8

  • Online ISBN: 978-1-4419-8327-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics