Skip to main content

Circulatory Injury in Liver Transplantation

  • Chapter
  • First Online:
  • 1391 Accesses

Abstract

Optimum graft function after liver transplantation is dependent on ­adequate sinusoidal perfusion. Hepatic microcirculation may be compromised by several factors such as cold ischemia, quality of the liver graft, handling of the organ during surgery, surgical procedure, and reperfusion injury. This chapter will focus on the pathological consequences of cold preservation and reperfusion injury on hepatic microcirculation. Microcirculatory ­dysfunction in grafts donated after cardiac death as well as steatotic grafts will be underlined. We will summarize the effects of graft manipulation and denervation during surgery. Furthermore, we will discuss the contribution of microcirculatory failure to graft rejection. Finally, recent advances in visualization and assessment of human hepatic microcirculation will be highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DCD:

Donation after cardiac death

I/R:

Ischemia/reperfusion

OLT:

Orthotopic liver transplantation

PG:

Prostaglandin

TNF:

Tumor necrosis factor

ROS:

Reactive oxygen species

TX:

Thromboxane

References

  1. Selzner M, Rudiger HA, Sindram D, Madden J, Clavien PA. Mechanisms of ischemic injury are different in the steatotic and normal rat liver. Hepatology. 2000;32:1280–8.

    Article  PubMed  CAS  Google Scholar 

  2. Selzner N, Rudiger H, Graf R, Clavien P-A. Protective strategies against ischemic injury of the liver. Gastroenterology. 2003;125:917–36.

    Article  PubMed  CAS  Google Scholar 

  3. Upadhya GA, Strasberg SM. Evidence that actin ­disassembly is a requirement for matrix metalloproteinase secretion by sinusoidal endothelial cells during cold preservation in the rat. Hepatology. 1999;30:169–76.

    Article  PubMed  CAS  Google Scholar 

  4. Miyagawa Y, Imamura H, Soeda J, Matsunaga K, Mochida S, Fujiwara K, et al. Fate of hepatocyte and sinusoidal lining cell function and kinetics after extended cold preservation and transplantation of the rat liver. Liver Transpl. 2002;8:370–81.

    Article  PubMed  Google Scholar 

  5. Clavien PA, Morgan GR, Sanabria JR, Petrunka C, Levy GA, Robert P, et al. Effect of cold preservation on lymphocyte adherence in the perfused rat liver. Transplantation. 1991;52:412–7.

    Article  PubMed  CAS  Google Scholar 

  6. Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Synergism between platelets and leukocytes in inducing endothelial cell apoptosis in the cold ischemic rat liver: a Kupffer cell-mediated injury. FASEB J. 2001;15:1230–2.

    PubMed  CAS  Google Scholar 

  7. Abe Y, Hines I, Zibari G, Grisham MB. Hepatocellular protection by nitric oxide or nitrite in ischemia and reperfusion injury. Arch Biochem Biophys. 2009;484:232–7.

    Article  PubMed  CAS  Google Scholar 

  8. Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair. 2008;1:5.

    Article  PubMed  Google Scholar 

  9. Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol. 2003;284:G15–26.

    PubMed  CAS  Google Scholar 

  10. Younis HS, Parrish AR. Glenn Sipes I. The role of hepatocellular oxidative stress in Kupffer cell activation during 1, 2-dichlorobenzene-induced hepatotoxicity. Toxicol Sci. 2003;76:201–11.

    Article  PubMed  CAS  Google Scholar 

  11. Vollmar B, Menger MD. The hepatic ­microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev. 2009;89:1269–339.

    Article  PubMed  CAS  Google Scholar 

  12. Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology. 2000;118:183–91.

    Article  PubMed  CAS  Google Scholar 

  13. Marzi I, Knee J, Menger MD, Harbauer G, Buhren V. Hepatic microcirculatory disturbances due to portal vein clamping in the orthotopic rat liver transplantation model. Transplantation. 1991;52:432–6.

    Article  PubMed  CAS  Google Scholar 

  14. Rudiger HA, Kang KJ, Sindram D, Riehle HM, Clavien PA. Comparison of ischemic preconditioning and intermittent and continuous inflow occlusion in the murine liver. Ann Surg. 2002;235:400–7.

    Article  PubMed  Google Scholar 

  15. Menger MD, Vollmar B. Role of microcirculation in transplantation. Microcirculation. 2000;7:291–306.

    PubMed  CAS  Google Scholar 

  16. El-Badry AM, Graf R, Clavien PA. Omega 3 – omega 6: what is right for the liver? J Hepatol. 2007;47:718–25.

    Article  PubMed  CAS  Google Scholar 

  17. Dutkowski P, De Rougemont O, Mullhaupt B, Clavien PA. Current and future trends in liver transplantation in Europe. Gastroenterology. 2010;138:802–9; e801–4.

    Google Scholar 

  18. Yamauchi J, Richter S, Vollmar B, Menger MD, Minor T. Microcirculatory perfusion pattern during harvest of livers from non-heart-beating donors: beneficial effect of warm preflush with streptokinase. Transplant Proc. 2000;32:21–2.

    Article  PubMed  CAS  Google Scholar 

  19. Minor T, Hachenberg A, Tolba R, Pauleit D, Akbar S. Fibrinolytic preflush upon liver retrieval from non-heart beating donors to enhance postpreservation viability and energetic recovery upon reperfusion. Transplantation. 2001;71:1792–6.

    Article  PubMed  CAS  Google Scholar 

  20. Tojimbara T, Wicomb WN, Garcia-Kennedy R, Burns W, Hayashi M, Collins G, et al. Liver transplantation from non-heart beating donors in rats: influence of viscosity and temperature of initial flushing solutions on graft function. Liver Transpl Surg. 1997;3:39–45.

    Article  PubMed  CAS  Google Scholar 

  21. Ohwada S, Sunose Y, Aiba M, Tsutsumi H, Iwazaki S, Totsuka O, et al. Advantages of Celsior solution in graft preservation from non-heart-beating donors in a canine liver transplantation model. J Surg Res. 2002;102:71–6.

    Article  PubMed  CAS  Google Scholar 

  22. Bessems M, Doorschodt BM, Albers PS, van Vliet AK, van Gulik TM. Wash-out of the non-heart-­beating donor liver: a comparison between ringer lactate, HTK, and polysol. Transplant Proc. 2005;37:395–8.

    Article  PubMed  CAS  Google Scholar 

  23. Fondevila C, Hessheimer AJ, Ruiz A, Calatayud D, Ferrer J, Charco R, et al. Liver transplant using donors after unexpected cardiac death: novel preservation protocol and acceptance criteria. Am J Transplant. 2007;7:1849–55.

    Article  PubMed  CAS  Google Scholar 

  24. Brockmann J, Reddy S, Coussios C, Pigott D, Guirriero D, Hughes D, et al. Normothermic perfusion: a new paradigm for organ preservation. Ann Surg. 2009;250:1–6.

    Article  PubMed  Google Scholar 

  25. de Rougemont O, Breitenstein S, Leskosek B, Weber A, Graf R, Clavien PA, et al. One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death. Ann Surg. 2009;250:674–83.

    Article  PubMed  Google Scholar 

  26. Xu HS, Stevenson WC, Pruett TL, Jones RS. Donor lazaroid pretreatment improves viability of livers harvested from non-heart-beating rats. Am J Surg. 1996;171:113–6; discussion 116–7.

    Google Scholar 

  27. Richter S, Yamauchi J, Minor T, Menger MD, Vollmar B. Heparin and phentolamine combined, rather than heparin alone, improves hepatic microvascular procurement in a non-heart-beating donor rat-model. Transpl Int. 2000;13:225–9.

    Article  PubMed  CAS  Google Scholar 

  28. Astarcioglu H, Karademir S, Unek T, Ozer E, Menekay S, Coker A, et al. Beneficial effects of pentoxifylline pretreatment in non-heart-beating donors in rats. Transplantation. 2000;69:93–8.

    Article  PubMed  CAS  Google Scholar 

  29. Ikegami T, Nishizaki T, Hiroshige S, Ohta R, Yanaga K, Sugimachi K. Experimental study of a type 3 phosphodiesterase inhibitor on liver graft function. Br J Surg. 2001;88:59–64.

    Article  PubMed  CAS  Google Scholar 

  30. Gu M, Takada Y, Fukunaga K, Ishiguro S, Taniguchi H, Seino K, et al. Pharmacologic graft protection without donor pretreatment in liver transplantation from non-heart-beating donors. Transplantation. 2000;70:1021–5.

    Article  PubMed  CAS  Google Scholar 

  31. Monbaliu D, Vekemans K, Hoekstra H, Vaahtera L, Libbrecht L, Derveaux K, et al. Multifactorial biological modulation of warm ischemia reperfusion injury in liver transplantation from non-heart-beating donors eliminates primary nonfunction and reduces bile salt toxicity. Ann Surg. 2009;250:808–17.

    Article  PubMed  Google Scholar 

  32. de Rougemont O, Dutkowski P, Clavien PA. Biological modulation of liver ischemia-reperfusion injury. Curr Opin Organ Transplant. 2010;15(2):183–9.

    Article  PubMed  Google Scholar 

  33. Farrell GC, Teoh NC, McCuskey RS. Hepatic microcirculation in fatty liver disease. Anat Rec (Hoboken). 2008;291:684–92.

    Article  Google Scholar 

  34. Sun CK, Zhang XY, Zimmermann A, Davis G, Wheatley AM. Effect of ischemia-reperfusion injury on the microcirculation of the steatotic liver of the Zucker rat. Transplantation. 2001;72:1625–31.

    Article  PubMed  CAS  Google Scholar 

  35. Hasegawa T, Ito Y, Wijeweera J, Liu J, Malle E, Farhood A, et al. Reduced inflammatory response and increased microcirculatory disturbances during hepatic ischemia-reperfusion injury in steatotic livers of ob/ob mice. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1385–95.

    Article  PubMed  CAS  Google Scholar 

  36. El-Badry AM, Moritz W, Contaldo C, Tian Y, Graf R, Clavien PA. Prevention of reperfusion injury and microcirculatory failure in macrosteatotic mouse liver by omega-3 fatty acids. Hepatology. 2007;45:855–63.

    Article  PubMed  CAS  Google Scholar 

  37. Behrns KE, Tsiotos GG, DeSouza NF, Krishna MK, Ludwig J, Nagorney DM. Hepatic steatosis as a potential risk factor for major hepatic resection. J Gastrointest Surg. 1998;2:292–8.

    Article  PubMed  CAS  Google Scholar 

  38. Belghiti J, Hiramatsu K, Benoist S, Massault P, Sauvanet A, Farges O. Seven hundred forty-seven hepatectomies in the 1990s: an update to evaluate the actual risk of liver resection. J Am Coll Surg. 2000;191:38–46.

    Article  PubMed  CAS  Google Scholar 

  39. Kooby DA, Fong Y, Suriawinata A, Gonen M, Allen PJ, Klimstra DS, et al. Impact of steatosis on perioperative outcome following hepatic resection. J Gastrointest Surg. 2003;7:1034–44.

    Article  PubMed  Google Scholar 

  40. McCormack L, Petrowsky H, Jochum W, Furrer K, Clavien PA. Hepatic steatosis is a risk factor for postoperative complications after major hepatectomy: a matched case-control study. Ann Surg. 2007;245:923–30.

    Article  PubMed  Google Scholar 

  41. Marsman WA, Wiesner RH, Rodriguez L, Batts KP, Porayko MK, Hay JE, et al. Use of fatty donor liver is associated with diminished early patient and graft survival. Transplantation. 1996;62:1246–51.

    Article  PubMed  CAS  Google Scholar 

  42. Urena MA, Ruiz-Delgado FC, Gonzalez EM, Segurola CL, Romero CJ, Garcia IG, et al. Assessing risk of the use of livers with macro and microsteatosis in a liver transplant program. Transplant Proc. 1998;30:3288–91.

    Article  PubMed  CAS  Google Scholar 

  43. Hayashi M, Fujii K, Kiuchi T, Uryuhara K, Kasahara M, Takatsuki M, et al. Effects of fatty infiltration of the graft on the outcome of living-related liver transplantation. Transplant Proc. 1999;31:403.

    Article  PubMed  CAS  Google Scholar 

  44. Verran D, Kusyk T, Painter D, Fisher J, Koorey D, Strasser S, et al. Clinical experience gained from the use of 120 steatotic donor livers for orthotopic liver transplantation. Liver Transpl. 2003;9:500–5.

    Article  PubMed  Google Scholar 

  45. Briceno J, Ciria R, Pleguezuelo M, de la Mata M, Muntane J, Naranjo A, et al. Impact of donor graft steatosis on overall outcome and viral recurrence after liver transplantation for hepatitis C virus cirrhosis. Liver Transpl. 2009;15:37–48.

    Article  PubMed  Google Scholar 

  46. Fishbein TM, Fiel MI, Emre S, Cubukcu O, Guy SR, Schwartz ME, et al. Use of livers with microvesicular fat safely expands the donor pool. Transplantation. 1997;64:248–51.

    Article  PubMed  CAS  Google Scholar 

  47. Jarnagin WR, Gonen M, Fong Y, DeMatteo RP, Ben-Porat L, Little S, et al. Improvement in perioperative outcome after hepatic resection: analysis of 1,803 consecutive cases over the past decade. Ann Surg. 2002;236:397–406; discussion 406–7.

    Google Scholar 

  48. Soejima Y, Shimada M, Suehiro T, Kishikawa K, Yoshizumi T, Hashimoto K, et al. Use of steatotic graft in living-donor liver transplantation. Transplantation. 2003;76:344–8.

    Article  PubMed  Google Scholar 

  49. Cho JY, Suh KS, Kwon CH, Yi NJ, Lee KU. Mild hepatic steatosis is not a major risk factor for hepatectomy and regenerative power is not impaired. Surgery. 2006;139:508–15.

    Article  PubMed  Google Scholar 

  50. Angele MK, Rentsch M, Hartl WH, Wittmann B, Graeb C, Jauch KW, et al. Effect of graft steatosis on liver function and organ survival after liver transplantation. Am J Surg. 2008;195:214–20.

    Article  PubMed  Google Scholar 

  51. Vuppalanchi R, Unalp A, Van Natta ML, Cummings OW, Sandrasegaran KE, Hameed T, et al. Effects of liver biopsy sample length and number of readings on sampling variability in nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:481–6.

    Article  PubMed  Google Scholar 

  52. Karcaaltincaba M, Akhan O. Imaging of hepatic ­steatosis and fatty sparing. Eur J Radiol. 2007;61:33–43.

    Article  PubMed  Google Scholar 

  53. DiDonato D, Brasaemle DL. Fixation methods for the study of lipid droplets by immunofluorescence microscopy. J Histochem Cytochem. 2003;51:773–80.

    Article  PubMed  CAS  Google Scholar 

  54. Fukumoto S, Fujimoto T. Deformation of lipid ­droplets in fixed samples. Histochem Cell Biol. 2002;118:423–8.

    Article  PubMed  CAS  Google Scholar 

  55. Garcia Urena MA, Colina Ruiz-Delgado F, Moreno Gonzalez E, Jimenez Romero C, Garcia Garcia I, Loinzaz Segurola C, et al. Hepatic steatosis in liver transplant donors: common feature of donor population? World J Surg. 1998;22:837–44.

    Article  PubMed  CAS  Google Scholar 

  56. El-Badry AM, Breitenstein S, Jochum W, Washington K, Paradis V, Rubbia-Brandt L, et al. Assessment of hepatic steatosis by expert pathologists: the end of a gold standard. Ann Surg. 2009;250(5):691–7.

    Article  PubMed  Google Scholar 

  57. Ijaz S, Winslet MC, Seifalian AM. The effect of consecutively larger doses of L-arginine on hepatic microcirculation and tissue oxygenation in hepatic steatosis. Microvasc Res. 2009;78:206–11.

    Article  PubMed  CAS  Google Scholar 

  58. Cottart CH, Do L, Blanc MC, Vaubourdolle M, Descamps G, Durand D, et al. Hepatoprotective effect of endogenous nitric oxide during ischemia-reperfusion in the rat. Hepatology. 1999;29:809–13.

    Article  PubMed  CAS  Google Scholar 

  59. Capanni M, Calella F, Biagini MR, Genise S, Raimondi L, Bedogni G, et al. Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study. Aliment Pharmacol Ther. 2006;23:1143–51.

    Article  PubMed  CAS  Google Scholar 

  60. Seifalian AM, Chidambaram V, Rolles K, Davidson BR. In vivo demonstration of impaired microcirculation in steatotic human liver grafts. Liver Transpl Surg. 1998;4:71–7.

    Article  PubMed  CAS  Google Scholar 

  61. Shirabe K, Kin S, Shinagawa Y, Chen S, Payne WD, Sugimachi K. Inhibition of thromboxane A2 activity during warm ischemia of the liver. J Surg Res. 1996;61:103–7.

    Article  PubMed  CAS  Google Scholar 

  62. Shirabe K, Takenaka K, Yamamoto K, Kitamura M, Itasaka H, Matsumata T, et al. The role of prostanoid in hepatic damage during hepatectomy. Hepatogas­troenterology. 1996;43:596–601.

    PubMed  CAS  Google Scholar 

  63. Clavien PA, Oberkofler C, Raptis DA, Lehmann K, Rickenbacher A, El-Badry AM. What is critical for liver surgery and partial liver transplantation:size or quality? Hepatology. 2010;52(2):715–29.

    Article  PubMed  Google Scholar 

  64. Colle I, Van Vlierberghe H, Troisi R, De Hemptinne B. Transplanted liver: consequences of denervation for liver functions. Anat Rec A Discov Mol Cell Evol Biol. 2004;280:924–31.

    Article  PubMed  Google Scholar 

  65. Pedrosa ME, Montero EF, Nigro AJ. Liver microcirculation after selective denervation. Microsurgery. 2001;21:163–5.

    Article  PubMed  CAS  Google Scholar 

  66. Schemmer P, Bunzendahl H, Raleigh JA, Thurman RG. Graft survival is improved by hepatic denervation before organ harvesting. Transplantation. 1999;67:1301–7.

    Article  PubMed  CAS  Google Scholar 

  67. Schemmer P, Schoonhoven R, Swenberg JA, Bunzendahl H, Thurman RG. Gentle in situ liver manipulation during organ harvest decreases survival after rat liver transplantation: role of Kupffer cells. Transplantation. 1998;65:1015–20.

    Article  PubMed  CAS  Google Scholar 

  68. Schemmer P, Connor HD, Arteel GE, Raleigh JA, Bunzendahl H, Mason RP, et al. Reperfusion injury in livers due to gentle in situ organ manipulation during harvest involves hypoxia and free radicals. J Pharmacol Exp Ther. 1999;290:235–40.

    PubMed  CAS  Google Scholar 

  69. Schemmer P, Schoonhoven R, Swenberg JA, Bunzendahl H, Raleigh JA, Lemasters JJ, et al. Gentle organ manipulation during harvest as a key determinant of survival of fatty livers after transplantation in the rat. Transpl Int. 1999;12:351–9.

    Article  PubMed  CAS  Google Scholar 

  70. Klar E, Angelescu M, Zapletal C, Kraus T, Herfarth C. Impairment of hepatic microcirculation as an early manifestation of acute rejection after clinical liver transplantation. Transplant Proc. 1999;31:385–7.

    Article  PubMed  CAS  Google Scholar 

  71. Adams DH, Hubscher SG, Shaw J, Rothlein R, Neuberger JM. Intercellular adhesion molecule 1 on liver allografts during rejection. Lancet. 1989;2:1122–5.

    Article  PubMed  CAS  Google Scholar 

  72. Kawano K, Bowers JL, Kruskal JB, Clouse ME. In vivo microscopic assessment of hepatic microcirculation during liver allograft rejection in the rat. Transplantation. 1995;59:1241–8.

    PubMed  CAS  Google Scholar 

  73. Tawadrous MN, Zimmermann A, Zhang XY, Wheatley AM. Persistence of impaired hepatic microcirculation after nonarterialized liver transplantation in the rat. Microcirculation. 2002;9:363–75.

    PubMed  Google Scholar 

  74. Fudaba Y, Ohdan H, Tashiro H, Miyata Y, Shibata S, Shintaku S, et al. Rearterialization of hepatic ­xenografts in the combination of hamster-to-rat. Transplant Proc. 2000;32:1127–8.

    Article  PubMed  CAS  Google Scholar 

  75. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5:1209–12.

    Article  PubMed  CAS  Google Scholar 

  76. Langer S, Harris AG, Biberthaler P, von Dobschuetz E, Messmer K. Orthogonal polarization spectral imaging as a tool for the assessment of hepatic microcirculation: a validation study. Transplantation. 2001;71:1249–56.

    Article  PubMed  CAS  Google Scholar 

  77. Puhl G, Schaser KD, Vollmar B, Menger MD, Settmacher U. Noninvasive in vivo analysis of the human hepatic microcirculation using orthogonal polorization spectral imaging. Transplantation. 2003;75:756–61.

    Article  PubMed  Google Scholar 

  78. Puhl G, Schaser KD, Pust D, Kohler K, Vollmar B, Menger MD, et al. Initial hepatic microcirculation correlates with early graft function in human orthotopic liver transplantation. Liver Transpl. 2005;11:555–63.

    Article  PubMed  Google Scholar 

  79. Cerny V, Turek Z, Parizkova R. In situ assessment of the liver microcirculation in mechanically ventilated rats using sidestream dark-field imaging. Physiol Res. 2009;58:49–55.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Alain Clavien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

El-Badry, A.M., Dutkowski, P., Clavien, PA. (2011). Circulatory Injury in Liver Transplantation. In: DeLeve, L., Garcia-Tsao, G. (eds) Vascular Liver Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8327-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8327-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8326-8

  • Online ISBN: 978-1-4419-8327-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics