Advertisement

Stellate Cells and the Microcirculation

Chapter

Abstract

Activation of hepatic stellate cells (HSCs) within hepatic sinusoids during chronic liver diseases is a key feature of the capillarization of sinusoids. This latter feature likely represents an initial cause of portal hypertension during the early development of hepatic fibrosis. Contraction of activated HSC occurs in vitro in response to different vasoconstrictors, and this feature may have important implications in the pathogenesis of portal hypertension and in the contraction of mature scar tissue. In cirrhotic liver, portal blood flow is largely diverted toward the systemic circulation through portal-central anastomoses. These neoformed vascular structures, although representing direct connections between the portal and the systemic circulation, follow irregular patterns, are site of thrombotic events, and are embedded in developing scar tissue. This tissue is characterized by the presence of different types of ECM-producing cells, all potentially able to contract in response to vasocostrictors (e.g., ET-1) released within cirrhotic liver tissues. It is implicit that cell contraction in response to these agents could be antagonized by autologous vasodilators (e.g., NO) or by drugs provided with vasodilator properties.

Keywords

Hepatic stellate cells Myofibroblasts Pericytes Cell contraction Liver fibrosis Cirrhosis Portal hypertension 

References

  1. 1.
    Wake K. Liver perivascular cells revealed by gold and silver impregnation methods and electron microscopy. In: Motta P, editor. Biopathology of the liver, an ­ultrastructural approach. Dordrecht: Kluwer; 1988. p. 23–6.Google Scholar
  2. 2.
    Wake K. Hepatic stellate cells. In: Tanikawa K, Ueno T, editors. Liver diseases and hepatic sinusoidal cells. Tokyo: Springer; 1999. p. 56–65.CrossRefGoogle Scholar
  3. 3.
    Wake K. Structure of the sinusoidal wall in the liver. In: Wisse E, Knook DL, Wake K, editors. Cells of the hepatic sinusoid. Leiden: The Kupffer Cell Foundation; 1995. p. 241–6.Google Scholar
  4. 4.
    Wake K, Motomatsu K, Ekataksin W. Postnatal ­development of the perisinusoidal stellate cells in the rat liver. In: Wisse E, Knook DL, McCuskey RS, ­editors. Cells of the hepatic sinusoid. Leiden: The Kupffer Cell Foundation; 1991. p. 269–75.Google Scholar
  5. 5.
    Gressner AM, Lofti S, Gressner G, Lahme B. Identification and partial characterization of a hepatocyte-derived factor promoting proliferation of cultured fat-storing cells (parasinusoidal lipocytes). Hepatology. 1992;16:1250–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Ballardini G, Groff P, Badiali de Giorgi L, Schuppan D, Bianchi FB. Ito cell heterogeneity: desmin-negative Ito cells in normal rat liver. Hepatology. 1994;19:440–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Zou Z, Ekataksin W, Wake K. Zonal and regional differences identified from precision mapping of vitamin A-storing lipid droplets of the hepatic stellate cells in pig liver: a novel concept of addressing the intralobular area of heterogeneity. Hepatology. 1998;27:1098–108.PubMedCrossRefGoogle Scholar
  8. 8.
    Higashi N, Senoo H. Distribution of vitamin A-storing lipid droplets in hepatic stellate cells in liver lobules-a comparative study. Anat Rec A Discov Mol Cell Evol Biol. 2003;271:240–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol. 1980;66:303–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Lafon ME, Bioulac-Sage P, LeBail N. Nerves and perisinusoidal cells in human liver. In: Wisse E, Knook DL, Decker K, editors. Cells of hepatic sinusoid. Riswijk: Kupffer Cell Foundation; 1989. p. 230–4.Google Scholar
  11. 11.
    Ueno T, Inuzuka S, Torimura T, Sakata R, Sakamoto M, Gondo K, et al. Distribution of substance P and vasoactive intestinal peptide in the human liver. Light and electron immunoperoxidase methods of observation. Am J Gastroenterol. 1991;138:1233–42.Google Scholar
  12. 12.
    Knittel T, Aurisch S, Neubauer K, Eichhorst S, Ramadori G. Cell-type-specific expression of neural cell adhesion molecule (N-CAM) in Ito cells of rat liver. Am J Pathol. 1996;149:449–62.PubMedGoogle Scholar
  13. 13.
    Niki T, Pekny M, Hellemans K, De Bleser P, Van Den Berg K, Vaeyens F, et al. Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology. 1999;29:520–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Cassiman D, Denef C, Desmet V, Roskams T. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology. 2001;33:148–58.PubMedCrossRefGoogle Scholar
  15. 15.
    Geerts A. On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal? J Hepatol. 2004;40:331–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Pinzani M, Gentilini P. Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis. Semin Liver Dis. 1999;19:397–410.PubMedCrossRefGoogle Scholar
  17. 17.
    Pinzani M, Failli P, Ruocco C, Casini A, Milani S, Baldi E, et al. Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. J Clin Invest. 1992;90:642–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Ekataksin W, Kaneda K. Liver microvascular ­architecture: an insight into the pathophysiology of portal hypertension. Sem Liv Dis. 1999;19:359–82.CrossRefGoogle Scholar
  19. 19.
    Zhang JX, Pegoli Jr W, Clemens MG. Endothelin-1 induces direct constriction of hepatic sinusoids. Am J Physiol. 1994;266:G624–32.PubMedGoogle Scholar
  20. 20.
    Zhang JX, Bauer M, Clemens MG. Vessel- and target cell-specific actions of endothelin-1 and endothelin-3 in rat liver. Am J Physiol. 1995;269:G269–77.PubMedGoogle Scholar
  21. 21.
    Thimgan MS, Yee Jr HF. Quantitation of rat hepatic stellate cell contraction: stellate cells’ contribution to sinusoidal tone. Am J Physiol. 1999;277:G137–43.PubMedGoogle Scholar
  22. 22.
    Kawada N, Klein H, Decker K. Eicoesanoid-mediated contractility of hepatic stellate cells. Biochem J. 1992;285:367–71.PubMedGoogle Scholar
  23. 23.
    Rockey DC, Housset CN, Friedman SL. Activation- dependent contractility of rat hepatic lipocytes in culture and in vivo. J Clin Invest. 1993;92:1795–804.PubMedCrossRefGoogle Scholar
  24. 24.
    Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996;24:233–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Bataller R, Nicolas JM, Gines P, Gorbig N, Garcia-Ramallo E, Lario S, et al. Contraction of human hepatic stellate cells activated in culture: a role for voltage-operated calcium channels. J Hepatol. 1998;29:398–408.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest. 1995;96:2461–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Yee Jr HF. Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton. Hepatology. 1998;28:843–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Iwamoto H, Sakai H, Nawata H. Inhibition of integrin signaling with Arg-Gly-Asp motifs in rat hepatic stellate cells. J Hepatol. 1998;29:752–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Yee Jr HF. Ca2+ and rho signaling pathways: two paths to hepatic stellate cell contraction. Hepatology. 2001;33:1007–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Laleman W, Van Landeghem L, Severi T, Vander Elst I, Zeegers M, Bisschops R, et al. Both Ca2+ -dependent and -independent pathways are involved in rat hepatic stellate cell contraction and intrahepatic hyperresponsiveness to methoxamine. Am J Physiol Gastrointest Liver Physiol. 2007;292:G556–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Bataller R, Gasull X, Gines P, Hellemans K, Gorbig MN, Nicolas JM, et al. In vitro and in vivo activation of rat hepatic stellate cells results in de novo expression of L-type voltage-operated calcium channels. Hepatology. 2001;33:956–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Tao J, Mallat A, Gallois C, Belmadani S, Mery PF, Tran-Van Nhieu J, et al. Biological effects of C-type natriuretic peptide in human myofibroblastic stellate cells. J Biol Chem. 1999;274:23761–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Bataller R, Nicolas JM, Ginees P, Gorbig MN, Garcia-Ramallo E, Lario S, et al. Contraction of human hepatic stellate cells activated in culture: a role for voltage-operated calcium channels. J Hepatol. 1998;29:398–408.PubMedCrossRefGoogle Scholar
  34. 34.
    Sah VP, Seasholtz TM, Sagi SA, Brown JH. The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol. 2000;40:459–89.PubMedCrossRefGoogle Scholar
  35. 35.
    Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70:389–99.PubMedCrossRefGoogle Scholar
  36. 36.
    Amano M, Chihara K, Kimura K, et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 1997;275:1308–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Amano M, Fukata Y, Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp Cell Res. 2000;261:44–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Yanase M, Ikeda H, Matsui A, et al. Lysophosphatidic acid enhancescollagen gel contraction by hepatic stellate cells: association with rho-kinase. Biochem Biophys Res Commun. 2000;277:72–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Kawada N, Seki S, Kuroki T, et al. ROCK inhibitor Y-27632 attenuates stellate cell contraction and portal pressure increase induced by endothelin-1. Biochem Biophys Res Commun. 1999;266:296–300.PubMedCrossRefGoogle Scholar
  40. 40.
    Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol. 2008;86:485–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Kedzierski RM, Yanagisawa M. Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol. 2001;41:851–76.PubMedCrossRefGoogle Scholar
  42. 42.
    Bauer M, Bauer I, Sonin NV, Kresge N, Baveja R, Yokoyama Y, et al. Clemens MG.Functional significance of endothelin B receptors in mediating sinusoidal and extrasinusoidal effects of endothelins in the intact rat liver. Hepatology. 2000;31:937–47.PubMedCrossRefGoogle Scholar
  43. 43.
    Clozel M, Gray GA, Breu V, Breu V, Löffler BM, Osterwalder R. The endothelin ETB receptor mediates both vasodilation and vasoconstriction in vivo. Biochem Biophys Res Commun. 1992;186:867–73.PubMedCrossRefGoogle Scholar
  44. 44.
    Higuchi H, Satoh T. Endothelin-1 induces vasoconstriction and nitric oxide release via endothelin ET(B) receptors in isolated perfused rat liver. Eur J Pharmacol. 1997;328:175–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Housset C, Rockey DC, Bissell DM. Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin 1. Proc Natl Acad Sci USA. 1993;90:9266–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Serradeil-Le Gal C, Jouneaux C, Sanchez-Bueno A, Raufaste D, Roche B, Préaux AM, et al. Endothelin action in rat liver. Receptors, free Ca2+ oscillations, and activation of glycogenolysis. J Clin Invest. 1991;87:133–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Kuddus RH, Nalesnik MA, Subbotin VM, Rao AS, Gandhi CR. Enhanced synthesis and reduced metabolism of endothelin-1 (ET-1) by hepatocytes – an important mechanism of increased endogenous levels of ET-1 in liver cirrhosis. J Hepatol. 2000;33:725–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Pinzani M, Milani S, DeFranco R, Grappone C, Caligiuri A, Gentilini A, et al. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology. 1996;110:534–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Rockey DC, Fouassier L, Chung JJ, Carayon A, Vallee P, Rey C, et al. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology. 1998;27:472–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Reinehr RM, Kubitz R, Peters-Regehr T, Bode JG, Haussinger D. Activation of rat hepatic stellate cells in culture is associated with increased sensitivity to endothelin 1. Hepatology. 1998;28:1566–77.PubMedCrossRefGoogle Scholar
  51. 51.
    Mallat A, Fouassier F, Preaux AM, Serradeil-Le Gal C, Raufaste D, Rosembaum J, et al. Growth inhibitory properties of endothelin-1 in human hepatic myofibroblastic Ito cells: an endothelin B receptor-mediated pathway. J Clin Invest. 1995;96:42–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Mallat A, Preaux A-M, Serradeil-Le Gal C, Raufaste D, Gallois C, Brenner DA, et al. Growth inhibitory properties of endothelin-1 in activated human hepatic stellate cells: a cyclic adenosine monophosphate-mediated pathway. J Clin Invest. 1996;98:2771–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhan S, Chan CC, Serdar B, Rockey DC. Fibronectin stimulates endothelin-1 synthesis in rat hepatic myofibroblasts via a Src/ERK-regulated signaling pathway. Gastroenterology. 2009;136:2345–55.PubMedCrossRefGoogle Scholar
  54. 54.
    Leivas A, Jimenez W, Bruix J, Boix L, Bosch J, Arroyo V, et al. Gene expression of endothelin-1 and ET(A) and ET(B) receptors in human cirrhosis: relationship with hepatic hemodynamics. J Vasc Res. 1998;35:186–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–56.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang Y, Yang X, Wu P, Xu L, Liao G, Yang G. Expression of angiotensin II type 1 receptor in rat hepatic stellate cells and its effects on cell growth and collagen production. Horm Res. 2003;60:105–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Bataller R, Sancho-Bru P, Gines P, Lora JM, Al Garawi A, Sole M, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125:117–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Moreno M, Bataller R. Cytokines and renin-angiotensin system signaling in hepatic fibrosis. Clin Liver Dis. 2008;12:825–52.PubMedCrossRefGoogle Scholar
  59. 59.
    Bataller R, Sancho-Bru P, Gines P, et al. Liver fibrogenesis: a new role for the renin-angiotensin system. Antioxid Redox Signal. 2007;7:1346–55.CrossRefGoogle Scholar
  60. 60.
    Wiest R, Groszmann RJ. Nitric oxide and portal hypertension: its role in the regulation of intrahepatic and splanchnic vascularresistance. Semin Liver Dis. 1999;19:411–26.PubMedCrossRefGoogle Scholar
  61. 61.
    Kawada N, Tran-Thi TA, Klein H, Decker K. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem. 1993;213:815–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Rockey DC, Chung JJ. Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest. 1995;95:1199–206.PubMedCrossRefGoogle Scholar
  63. 63.
    Failli P, De Franco RM, Caligiuri A, Gentilini A, Romanelli RG, Marra F, et al. Nitrovasodilators inhibit platelet-derived growth factor-induced proli­feration and migration of activated human hepatic stellate cells. Gastroenterology. 2000;119:479–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou Q, Hennenberg M, Trebicka J, Jochem K, Leifeld L, Biecker E, et al. Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis. Gut. 2006;55:1296–305.PubMedCrossRefGoogle Scholar
  65. 65.
    Zipprich A, Steudel N, Behrmann C, Meiss F, Sziegoleit U, Fleig WE, et al. Functional significance of hepatic arterial flow reserve in patients with cirrhosis. Hepatology. 2003;37:385–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Laleman W, Van Landeghem L, Van der Elst I, Zeegers M, Fevery J, Nevens F. Nitroflurbiprofen, a nitric oxide-releasing cyclooxygenase inhibitor, improves cirrhotic portal hypertension in rats. Gastroenterology. 2007;132:709–19.PubMedCrossRefGoogle Scholar
  67. 67.
    Sohail MA, Hashmi AZ, Hakim W, Watanabe A, Zipprich A, Groszmann RJ, et al. Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition. Hepatology. 2009;49:185–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Goda N, Suzuki K, Naito M, Takeoka S, Tsuchida E, Ishimura Y, et al. Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. J Clin Invest. 1998;101:604–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Fernandez M, Bonkovsky HL. Increased heme oxygenase-1 gene expression in liver cells and splanchnic organs from portal hypertensive rats. Hepatology. 1999;29:1672–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Makino N, Suematsu M, Sugiura Y, Morikawa H, Shiomi S, Goda N, et al. Altered expression of heme oxygenase-1 in the livers of patients with portal hypertensive diseases. Hepatology. 2001;33:32–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Matsumi M, Takahashi T, Fujii H, Ohashi I, Kaku R, Nakatsuka H, et al. Increased heme oxygenase-1 gene expression in the livers of patients with portal hypertension due to severe hepatic cirrhosis. J Int Med Res. 2002;30:282–8.PubMedGoogle Scholar
  72. 72.
    Wakabayashi Y, Takamiya R, Mizuki A, Kyokane T, Goda N, Yamaguchi T, et al. Carbon monoxide overproduced by heme oxygenase-1 causes a reduction of vascular resistance in perfused rat liver. Am J Physiol. 1999;277:G1088–96.PubMedGoogle Scholar
  73. 73.
    Rensing H, Bauer I, Zhang JX, Paxian M, Pannen BH, Yokoyama Y, et al. Endothelin-1 and heme oxygenase-1 as modulators of sinusoidal tone in the stress-exposed rat liver. Hepatology. 2002;36:1453–65.PubMedGoogle Scholar
  74. 74.
    Rizzo G, Distrutti E, Shah V, Morelli A. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology. 2005;42:539–48.PubMedCrossRefGoogle Scholar
  75. 75.
    Fiorucci S, Distrutti E, Cirino G, Wallace JL. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology. 2006;131:259–71.PubMedCrossRefGoogle Scholar
  76. 76.
    Distrutti E, Mencarelli A, Santucci L, Renga B, Orlandi S, Donini A, et al. The methionine connection: homocysteine and hydrogen sulfide exert opposite effects on hepatic microcirculation in rats. Hepatology. 2008;47:659–67.PubMedCrossRefGoogle Scholar
  77. 77.
    Reynaert H, Geerts A. Pharmacological rationale for the use of somatostatin and analogues in portal hypertension. Aliment Pharmacol Ther. 2003;18:375–86.PubMedCrossRefGoogle Scholar
  78. 78.
    Reynaert H, Vaeyens F, Qin H, Hellemans K, Chatterjee N, Winand D, et al. Somatostatin suppresses endothelin-1-induced rat hepatic stellate cell contraction via somatostatin receptor subtype 1. Gastroenterology. 2001;121:915–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Vanheule E, Geerts AM, Reynaert H, Van Vlierberghe H, Geerts A, De Vos M, et al. Influence of somatostatin and octreotide on liver microcirculation in an experimental mouse model of cirrhosis studied by intravital fluorescence microscopy. Liver Int. 2008;28:107–16.PubMedCrossRefGoogle Scholar
  80. 80.
    Wake K, Sato T. Intralobular heterogeneity of perisinusoidal stellate cells in porcine liver. Cell Tissue Res. 1993;273:227–37.PubMedCrossRefGoogle Scholar
  81. 81.
    Wake K. In: Vidal-Vanaclocha F, editor. Functional heterogeneity of liver tissue. Austin: RG Landes Co; 1977.Google Scholar

Copyright information

© Springer New York 2011

Authors and Affiliations

  1. 1.Dipartimento di Medicina Interna, Center for Research, High Education and Transfer DENOTheUniversità degli Studi di FirenzeFirenzeItaly

Personalised recommendations