Skip to main content

Covariant Evolution Operator and Green’s Operator

  • Chapter
  • First Online:
Relativistic Many-Body Theory

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 63))

  • 1188 Accesses

Abstract

The third method we shall consider for numerical QED calculation on bound states is the covariant-evolution-operator (CEO) method, developed during the last decade by the Gothenburg group [9]. This procedure is based upon the nonrelativistic time-evolution operator, discussed in Chap. 8, but it is made covariant in order to be applicable in relativistic calculations. Later, we shall demonstrate that this procedure forms a convenient basis for a covariant relativistic many-body perturbation procedure, including QED as well as correlational effects, which for two-electron systems is fully compatible with the Bethe–Salpeter equation. This question will be the main topic of the rest of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See footnote in the Introduction.

  2. 2.

    An “n-body operator” is an operator with n pairs of creation/absorption operators (for particles), while an “m-particle” function or operator is an object of m particles outside our vacuum. In principle, n can take any value n ≤ m, although we shall normally assume that n = m.

  3. 3.

    It should be observed that a Goldstone diagram is generally distinct from a “time-ordered Feynman diagram,” as is further analyzed in Appendix I.

  4. 4.

    Concerning the definition of the concepts “reducible” and “irreducible,” see Sect. 7.6.

  5. 5.

    Also, the Fock space is a form of Hilbert space, and therefore we shall refer to the Hilbert space with a constant number of photons as the restricted (Hilbert) space and the space with a variable number of photons as the (extended) photonic Fock space (see Appendix A.2).

  6. 6.

    This equation is not completely covariant, because it has a single time, in accordance with the established quantum-mechanical picture. This is the equal-time approximation, mentioned above and further discussed later. In addition, a complete covariant treatment would require that also the interaction between the electrons and the nucleus is treated in a covariant way by means of the exchange of virtual photons (see, for instance, [14]).

  7. 7.

    In the following, we shall leave out the subscript “Rel.”

  8. 8.

    The Green’s operator is closely related – but not quite identical – to the reduced covariant evolution operator, previously introduced by the Gothenburg group [9].

  9. 9.

    This can be compared with the situation in the MBPT Bloch equation (2.56), where – using the heavy dot – the folded term could be expressed \(\Omega \cdot P{V }_{\mathrm{eff}}P\), indicating that the energy parameters of the wave operator depend on the intermediate model-space state.

  10. 10.
    $$\begin{array}{rcl} \frac{\delta \mathcal{G}} {\delta \mathcal{E}}& =& \frac{{\mathcal{G}}_{\mathcal{E}}-{\mathcal{G}}_{\mathcal{E}\prime }} {\mathcal{E}-\mathcal{E}\prime } ; \quad \frac{\delta } {\delta \mathcal{E}}\Big{(}\frac{\delta \mathcal{G}} {\delta \mathcal{E}}V \Big{)} = \frac{\big{(}\frac{\delta \mathcal{G}} {\delta \mathcal{E}}{\big{)}}_{\mathcal{E}}{V }_{\mathcal{E}}-\big{(}\frac{\delta \mathcal{G}} {\delta \mathcal{E}}{\big{)}}_{\mathcal{E}\prime }{V }_{\mathcal{E}\prime }} {\mathcal{E}-\mathcal{E}\prime } \\ & =& \frac{\big{(}\frac{\delta \mathcal{G}} {\delta \mathcal{E}}{\big{)}}_{\mathcal{E}}{V }_{\mathcal{E}}-\big{(}\frac{\delta \mathcal{G}} {\delta \mathcal{E}}{\big{)}}_{\mathcal{E}\prime }{V }_{\mathcal{E}} + \big{(}\frac{\delta \mathcal{G}} {\delta \mathcal{E}}{\big{)}}_{\mathcal{E}\prime }{V }_{\mathcal{E}}-\big{(}\frac{\delta \mathcal{G}} {\delta \mathcal{E}}{\big{)}}_{\mathcal{E}\prime }{V }_{\mathcal{E}\prime }} {\mathcal{E}-\mathcal{E}\prime } = \frac{{\delta }^{2}\mathcal{G}} {\delta {\mathcal{E}}^{2}} \,V + \frac{\delta \mathcal{G}} {\delta \mathcal{E}}\frac{\delta V } {\delta \mathcal{E}} \\ \frac{\delta } {\delta \mathcal{E}}\;{V }^{2}& =& \frac{\delta } {\delta \mathcal{E}}{V }_{\mathcal{E}\prime \prime }{V }_{\mathcal{E}} = {V }_{\mathcal{E}\prime \prime }\frac{{V }_{\mathcal{E}}- {V }_{\mathcal{E}\prime }} {\mathcal{E}-\mathcal{E}\prime } = V \frac{\delta V } {\delta \mathcal{E}} \end{array}$$

    This can be generalized to

    $$\frac{{\delta }^{n}(AB)} {\delta {\mathcal{E}}^{n}} ={ \sum \nolimits }_{m=0}^{n}\frac{{\delta }^{m}A} {\delta {\mathcal{E}}^{m}} \,\frac{{\delta }^{n-m}B} {\delta {\mathcal{E}}^{n-m}}$$

    (see further [11, Appendix B]).

  11. 11.

    Distinguishing the various interactions, we can write

    $$\begin{array}{rcl} {\mathcal{G}}_{0}& =& {\mathcal{G}}^{(0)}\big{(}1 + {\Gamma }_{ Q}{V }_{1} + {\Gamma }_{Q}{V }_{1}{\Gamma }_{Q}{V }_{2} + \cdots \big{)} \\ {\Delta }_{1}& =& \Big{[}\frac{\delta {\mathcal{G}}_{0}} {\delta \mathcal{E}} - {\Gamma }_{Q}{V }_{1}\,\frac{\delta {\mathcal{G}}_{0}} {\delta \mathcal{E}} \Big{]}{W}_{0} = \Big{[}\frac{\delta {\mathcal{G}}^{(0)}} {\delta \mathcal{E}} + {\mathcal{G}}_{0}\frac{\delta ({\Gamma }_{Q}{V }_{1})} {\delta \mathcal{E}} \,\big{(}1 + {\Gamma }_{Q}{V }_{2} + \cdots \big{)}\Big{]}{W}_{0} \\ & =:& \frac{{\delta }^{{_\ast}}{\mathcal{G}}_{1}} {\delta \mathcal{E}} \Big{[}\frac{{\delta }^{2}{\mathcal{G}}_{0}} {\delta {\mathcal{E}}^{2}} - {\Gamma }_{Q}{V }_{1}\,\frac{{\delta }^{2}{\mathcal{G}}_{0}} {\delta {\mathcal{E}}^{2}} \Big{]}{W}_{0} \\ & =& \Bigg{[}\frac{{\delta }^{2}{\mathcal{G}}^{(0)}} {\delta {\mathcal{E}}^{2}} + \frac{\delta {\mathcal{G}}^{(0)}} {\delta \mathcal{E}} \frac{\delta ({\Gamma }_{Q}{V }_{1})} {\delta \mathcal{E}} \,\big{(}1 + {\Gamma }_{Q}{V }_{2} + \cdots \big{)} + {\mathcal{G}}^{(0)}\frac{{\delta }^{2}({\Gamma }_{Q}{V }_{1})} {\delta {\mathcal{E}}^{2}} \,\big{(}1 + {\Gamma }_{Q}{V }_{2} + \cdots \big{)} \\ & & \quad +\, {\mathcal{G}}^{(0)}\frac{\delta ({\Gamma }_{Q}{V }_{1})} {\delta \mathcal{E}} \,\frac{\delta ({\Gamma }_{Q}{V }_{2})} {\delta \mathcal{E}} \,\big{(}1 + {\Gamma }_{Q}{V }_{3} + \cdots \big{)} + \cdots \Bigg{]}{W}_{0} =: \frac{{\delta }^{{_\ast}}{\mathcal{G}}_{1}} {\delta \mathcal{E}} \end{array}$$
  12. 12.

    We observe here that also the zeroth-order term has changed its time dependence, which is a consequence of the fact that the zeroth-order Green’s operator, \({\mathcal{G}}^{(0)}\), is being modified by the expansion (6.96).

References

  1. Adkins, G.: One-loop renormalization of Coulomb-gauge QED. Phys. Rev. D 27, 1814–20 (1983)

    Google Scholar 

  2. Åsén, B.: QED effects in excited states of helium-like ions. Ph.D. thesis, Department of Physics, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden (2002)

    Google Scholar 

  3. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. Mc-Graw-Hill Pbl. Co, N.Y. (196)

    Google Scholar 

  4. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. Mc-Graw-Hill Pbl. Co, N.Y. (1964)

    Google Scholar 

  5. E.Lindroth, Mårtensson-Pendrill, A.M.: Isotope Shifts and Energies of the 1s2p States in Helium. Z. Phys. A 316, 265–273 (1984)

    Google Scholar 

  6. Feynman, R.P.: The Theory of Positrons. Phys. Rev. 76, 749–59 (1949)

    Google Scholar 

  7. Lindgren, I.: Can MBPT and QED be merged in a systematic way? Mol. Phys. 98, 1159–1174 (2000)

    Google Scholar 

  8. Lindgren, I., Åsén, B., Salomonson, S., Mårtensson-Pendrill, A.M.: QED procedure applied to the quasidegenerate fine-structure levels of He-like ions. Phys. Rev. A 64, 062,505 (2001)

    Google Scholar 

  9. Lindgren, I., Salomonson, S., Åsén, B.: The covariant-evolution-operator method in bound-state QED. Physics Reports 389, 161–261 (2004)

    Google Scholar 

  10. Lindgren, I., Salomonson, S., Hedendahl, D.: Many-body-QED perturbation theory: Connection to the two-electron Bethe-Salpeter equation. Einstein centennial review paper. Can. J. Phys. 83, 183–218 (2005)

    Google Scholar 

  11. Lindgren, I., Salomonson, S., Hedendahl, D.: Many-body procedure for energy-dependent perturbation: Merging many-body perturbation theory with QED. Phys. Rev. A 73, 062,502 (2006)

    Google Scholar 

  12. Mohr, P.J., Plunien, G., Soff, G.: QED corrections in heavy atoms. Physics Reports 293, 227–372 (1998)

    Google Scholar 

  13. Rosenberg, L.: Virtual-pair effects in atomic structure theory. Phys. Rev. A 39, 4377–86 (1989)

    Google Scholar 

  14. Shabaev, V.M., Artemyev, A.N., Beier, T., Plunien, G., Yerokhin, V.A., Soff, G.: Recoil correction to the ground-state energy of hydrogenlike atoms. Phys. Rev. A 57, 4235–39 (1998)

    Google Scholar 

  15. Stuckelberg, E.C.G.:. Helv.Phys.Acta 15, 23 (1942)

    Google Scholar 

  16. Uehling, E.A.: Polarization Effects in the Positron Theory. Phys. Rev. 48, 55–63 (1935)

    Google Scholar 

  17. Wichmann, E.H., Kroll, N.M.: Vacuum Polarization in a Strong Coulomb Field. Phys. Rev. 101, 843–59 (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingvar Lindgren .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lindgren, I. (2011). Covariant Evolution Operator and Green’s Operator. In: Relativistic Many-Body Theory. Springer Series on Atomic, Optical, and Plasma Physics, vol 63. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8309-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8309-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8308-4

  • Online ISBN: 978-1-4419-8309-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics