Advertisement

Green’s Functions

  • Ingvar LindgrenEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 63)

Abstract

The Green’s function is an important tool with applications in classical as well as quantum physics (for an introduction, see particularly the book by Fetter and Walecka [5, Chap. 3], see also the book by Mahan [8]). More recently, it has been applied also to quantum-electrodynamics by Shabaev et al. [11]. As a background, we shall first consider the classical Green’s function.

Keywords

Feynman Amplitude Electron Propagator Connected Diagram Lehmann Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Artemyev, A.N., Beier, T., Plunien, G., Shabaev, V.M., Soff, G., Yerokhin, sV.A.: Vacuum-polarization screening corrections to the energy levels of heliumlike ions. Phys. Rev. A 62, 022,116.1–8 (2000)Google Scholar
  2. 2.
    Artemyev, A.N., Shabaev, V.M., Yerokhin, V.A., Plunien, G., Soff, G.: QED calculations of the n=1 and n=2 energy levels in He-like ions. Phys. Rev. A 71, 062,104 (2005)Google Scholar
  3. 3.
    Avgoustoglou, E.N., Beck, D.R.: All-order relativistic many-body calculations for the electron affinities of Ca , Sr , Ba , and Yb negative ions. Phys. Rev. A 55, 4143–49 (1997)Google Scholar
  4. 4.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. Mc-Graw-Hill Pbl. Co, N.Y. (1964)Google Scholar
  5. 5.
    Fetter, A.L., Walecka, J.D.: The Quantum Mechanics of Many-Body Systems. McGraw-Hill, N.Y. (1971)Google Scholar
  6. 6.
    Feynman, R.P.: The Theory of Positrons. Phys. Rev. 76, 749–59 (1949)Google Scholar
  7. 7.
    Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill (1980)Google Scholar
  8. 8.
    Mahan, G.D.: Many-particle Physics, second edition. Springer Verlag, Heidelberg (1990)CrossRefGoogle Scholar
  9. 9.
    Nadeau, M.J., Zhao, X.L., Garvin, M.A., Litherland, A.E.: Ca negative-ion binding energy. Phys. Rev. A 46, R3588–90 (1992)Google Scholar
  10. 15.
    Petrunin, V.V., Andersen, H.H., Balling, P., Andersen, T.: Structural Properties of the Negative Calcium Ion: Binding Energies and Fine-Structure Splitting. Phys. Rev. Lett. 76, 744 (1996)Google Scholar
  11. 10.
    Salomonson, S., Warston, H., Lindgren, I.: Many-Body Calculations of the Electron Affinity for Ca and Sr. Phys. Rev. Lett. 76, 3092–95 (1996)Google Scholar
  12. 11.
    Shabaev, V.M.: Two-times Green’s function method in quantum electrodynamics of high-Z few-electron atoms. Physics Reports 356, 119–228 (2002)Google Scholar
  13. 12.
    Walter, C., Peterson, J.: Shape resonance in Ca photodetachment and the electron affinity of Ca( 1 S). Phys. Rev. Lett. 68, 2281–84 (1992)Google Scholar
  14. 13.
    Yerokhin, V.A., Artemyev, A.N., Beier, T., Plunien, G., Shabaev, V.M., Soff, G.: Two-electron self-energy corrections to the 2p 1∕2 − 2s transition energy in Li-like ions. Phys. Rev. A 60, 3522–40 (1999)Google Scholar
  15. 14.
    Yerokhin, V.A., Artemyev, A.N., Shabaev, V.M., Sysak, M.M., Zherebtsov, O.M., Soff, G.: Evaluation of the two-photon exchange graphs for the 2p 1∕2 − 2s transition in Li-like Ions. Phys. Rev. A 64, 032,109.1–15 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GothenburgGöteborgSweden

Personalised recommendations