Advertisement

Time-Dependent Formalism

  • Ingvar LindgrenEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 63)

Abstract

In this chapter, we shall summarize the fundamentals of time-dependent perturbation theory. Although we shall be only concerned with stationary problems in this book, it will be advantageous to apply time-dependent methods. We restrict ourselves in this chapter to the nonrelativistic formalism and return to the relativistic one in later chapters.

References

  1. 1.
    Brown, G.E., Kuo, T.T.S.: Structure of finite nuclei and the nucleon-nucleon interaction. Nucl. Phys. A 92, 481–94 (1967)Google Scholar
  2. 2.
    Fetter, A.L., Walecka, J.D.: The Quantum Mechanics of Many-Body Systems. McGraw-Hill, N.Y. (1971)Google Scholar
  3. 3.
    Gell-Mann, M., Low, F.: Bound States in Quantum Field Theory. Phys. Rev. 84, 350–54 (1951)Google Scholar
  4. 4.
    Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill (1980)Google Scholar
  5. 5.
    Jones, R.W., Mohling, F.: Perturbation theory of a many-fermion system. Nucl. Phys. A 151, 420–48 (1970)Google Scholar
  6. 6.
    Kuo, T.T.S., Lee, S.Y., Ratcliff, K.F.: A folded-diagram expansion of the model-space effective Hamiltonian. Nucl. Phys. A 176, 65–88 (1971)Google Scholar
  7. 7.
    Lindgren, I., Salomonson, S., Åsén, B.: The covariant-evolution-operator method in bound-state QED. Physics Reports 389, 161–261 (2004)Google Scholar
  8. 8.
    Morita, T.: Perturbation Theory for Degenerate Problems of Many-Fermion Systems. Progr. Phys. (Japan) 29, 351–69 (1963)Google Scholar
  9. 9.
    Oberlechner, G., Owono-N’-Guema, F., Richert, J.: Perturbation Theory for the Degenerate Case in the Many-Body Problem. Nouvo Cimento B 68, 23–43 (1970)Google Scholar
  10. 10.
    Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Harper and Row, N.Y. (1961)Google Scholar
  11. 11.
    Tolmachev, V.V.: The field-theoretic form of the perturbation theory for many-electron atoms. I. Abstract theory. Adv. Chem. Phys. 14, 421, 471 (1969)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GothenburgGöteborgSweden

Personalised recommendations