Time-Dependent Formalism

  • Ingvar LindgrenEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 63)


In this chapter, we shall summarize the fundamentals of time-dependent perturbation theory. Although we shall be only concerned with stationary problems in this book, it will be advantageous to apply time-dependent methods. We restrict ourselves in this chapter to the nonrelativistic formalism and return to the relativistic one in later chapters.


  1. 1.
    Brown, G.E., Kuo, T.T.S.: Structure of finite nuclei and the nucleon-nucleon interaction. Nucl. Phys. A 92, 481–94 (1967)Google Scholar
  2. 2.
    Fetter, A.L., Walecka, J.D.: The Quantum Mechanics of Many-Body Systems. McGraw-Hill, N.Y. (1971)Google Scholar
  3. 3.
    Gell-Mann, M., Low, F.: Bound States in Quantum Field Theory. Phys. Rev. 84, 350–54 (1951)Google Scholar
  4. 4.
    Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill (1980)Google Scholar
  5. 5.
    Jones, R.W., Mohling, F.: Perturbation theory of a many-fermion system. Nucl. Phys. A 151, 420–48 (1970)Google Scholar
  6. 6.
    Kuo, T.T.S., Lee, S.Y., Ratcliff, K.F.: A folded-diagram expansion of the model-space effective Hamiltonian. Nucl. Phys. A 176, 65–88 (1971)Google Scholar
  7. 7.
    Lindgren, I., Salomonson, S., Åsén, B.: The covariant-evolution-operator method in bound-state QED. Physics Reports 389, 161–261 (2004)Google Scholar
  8. 8.
    Morita, T.: Perturbation Theory for Degenerate Problems of Many-Fermion Systems. Progr. Phys. (Japan) 29, 351–69 (1963)Google Scholar
  9. 9.
    Oberlechner, G., Owono-N’-Guema, F., Richert, J.: Perturbation Theory for the Degenerate Case in the Many-Body Problem. Nouvo Cimento B 68, 23–43 (1970)Google Scholar
  10. 10.
    Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Harper and Row, N.Y. (1961)Google Scholar
  11. 11.
    Tolmachev, V.V.: The field-theoretic form of the perturbation theory for many-electron atoms. I. Abstract theory. Adv. Chem. Phys. 14, 421, 471 (1969)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GothenburgGöteborgSweden

Personalised recommendations