Advertisement

Time-Independent Formalism

  • Ingvar LindgrenEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 63)

Abstract

In this first part of the book, we shall review some basics of quantum mechanics and the many-body theory for bound electronic systems that will form the foundations for the following treatment. This material can also be found in several standard text books. The time-independent formalism is summarized in the present chapter1 and the time-dependent formalism in the following one.

Keywords

Model Space Cluster Operator Wave Operator Perturbation Expansion Bloch Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Araki, H.: Quantum-Electrodynamical Corrections to Energy-levels of Helium. Prog. Theor. Phys. (Japan) 17, 619–42 (1957)Google Scholar
  2. 2.
    Bartlett, R.J.: Coupled-cluster approach to molecular structure and spectra: A step toward predictive quantum chemistry. J. Phys. Chem. 93, 1697–1708 (1989)Google Scholar
  3. 3.
    Bartlett, R.J., Purvis, G.D.: Many-Body Perturbation Theory, Coupled-Pair Many-Electron Theory, and the Importance of Quadruple Excitations for the Correlation Problem. Int. J. Quantum Chem. 14, 561–81 (1978)Google Scholar
  4. 4.
    Bloch, C.: Sur la détermination de l’etat fondamental d’un système de particules. Nucl. Phys. 7, 451–58 (1958)Google Scholar
  5. 5.
    Bloch, C.: Sur la théorie des perurbations des etats liés. Nucl. Phys. 6, 329–47 (1958)Google Scholar
  6. 6.
    Blundell, S.A., Johnson, W.R., Liu, Z.W., Sapirstein, J.: Relativistic all-order calculations of energies and matrix elements for Li and Be +. Phys. Rev. A 40, 2233–46 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    Brandow, B.H.: Linked-Cluster Expansions for the Nuclear Many-Body Problem. Rev. Mod. Phys. 39, 771–828 (1967)Google Scholar
  8. 8.
    Brown, G.E., Ravenhall, D.G.: On the Interaction of Two electrons. Proc. R. Soc. London, Ser. A 208, 552–59 (1951)Google Scholar
  9. 9.
    Brueckner, K.A.: Many-Body Problems for Strongly Interacting Particles. II. Linked Cluster Expansion. Phys. Rev. 100, 36–45 (1955)Google Scholar
  10. 10.
    Bukowski, R., Jeziorski, B., Szalewicz, K.: Gaussian geminals in explicitly correlated coupled cluster theory including single and double excitations. J. Chem. Phys. 110, 4165–83 (1999)Google Scholar
  11. 11.
    Čižek, J.: On the Correlation Problem in Atomic and Molecular Systems. Calculations of Wavefunction Components in the Ursell-Type Expansion Using Quantum-Field Theoretical Methods. J. Chem. Phys. 45, 4256–66 (1966)Google Scholar
  12. 12.
    Coster, F.: Bound states of a many-particle system. Nucl. Phys. 7, 421–24 (1958)Google Scholar
  13. 13.
    Coster, F., Kümmel, H.: Short-range correlations in nuclear wave functions. Nucl. Phys. 17, 477–85 (1960)Google Scholar
  14. 14.
    Drake, G.W.F.: Theoretical energies for the n = 1 and 2 states of the helium isoelectronic sequence up to Z=100. Can. J. Phys. 66, 586–611 (1988)Google Scholar
  15. 15.
    Durand, P., Malrieu, J.P.: Multiconfiguration Dirac-Fock studies of two-electron ions: II. Radiative corrections and comparison with experiment. Adv. Chem. Phys. 67, 321 (1987)Google Scholar
  16. 16.
    Dyson, F.J.: The radiation Theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75, 486–502 (1949)Google Scholar
  17. 17.
    Eliav, E., Kaldor, U., Ishikawa, Y.: Ionization potentials and excitation energies of the alkali-metal atoms by the relativistic coupled-cluster method. Phys. Rev. A 50, 1121–28 (1994)Google Scholar
  18. 18.
    E.Lindroth, Mårtensson-Pendrill, A.M.: Isotope Shifts and Energies of the 1s2p States in Helium. Z. Phys. A 316, 265–273 (1984)Google Scholar
  19. 19.
    Fetter, A.L., Walecka, J.D.: The Quantum Mechanics of Many-Body Systems. McGraw-Hill, N.Y. (1971)Google Scholar
  20. 20.
    Garpman, S., Lindgren, I., Lindgren, J., Morrison, J.: Calculation of the hyperfine interaction using an effective-operator form of many-body theory. Phys. Rev. A 11, 758–81 (1975)Google Scholar
  21. 21.
    Goldstone, J.: Derivation of the Brueckner many-body theory. Proc. R. Soc. London, Ser. A 239, 267–279 (1957)Google Scholar
  22. 22.
    Grant, I.P.: Relativistic Quantum Theory of Atoms and Molecules. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Hubbard, J.: The description of collective motions in terms of many-body perturbation theory. 3. The extension of the theory to non-uniform gas. Proc. R. Soc. London, Ser. A 243, 336–52 (1958)Google Scholar
  24. 24.
    Jankowski, K., Malinowski, P.: A valence-universal coupled-cluster single- and double-excitations method for atoms: II. Application to Be. J. Phys. B 27, 829–42 (1994)Google Scholar
  25. 25.
    Jankowski, K., Malinowski, P.: A valence-universal coupled-cluster single- and double-excitations method for atoms: III. Solvability problems in the presence of intruder states. J. Phys. B 27, 1287–98 (1994)Google Scholar
  26. 26.
    Jena, D., Datta, D., Mukherjee, D.: A novel VU-MRCC formalism for the simultaneous treatment of strong relaxation and correlation effects with applications to electron affinity of neutral radicals. Chem. Phys. 329, 290–306 (2006)Google Scholar
  27. 27.
    Jeziorski, B., Monkhorst, H.J.: ACoupled-cluster method for multideterminantal reference states. Phys. Rev. A 24, 1668–81 (1981)Google Scholar
  28. 28.
    Jeziorski, B., Paldus, J.: Spin-adapted multireference coupled-cluster approach: Linear approximation for two closed-shell-type reference configuration. J. Chem. Phys. 88, 5673–87 (1988)Google Scholar
  29. 29.
    Johnson, W.R., Blundell, S.A., Sapirstein, J.: Finite basis sets for the Dirac equation constructed from B splines. Phys. Rev. A 37, 307–15 (1988)Google Scholar
  30. 30.
    Johnson, W.R., Blundell, S.A., Sapirstein, J.: Many-body perturbation-theory calculations of energy-levels along the sodium isoelectronic sequence. Phys. Rev. A 38, 2699–2706 (1988)Google Scholar
  31. 31.
    Kaldor, U., Eliav, E.: High-Accuracy Calculations for Heavy and Super-Heavy Elements. Adv. Quantum Chem. 31, 313–36 (1999)Google Scholar
  32. 32.
    Kelly, H.P.: Application of many-body diagram techniques in atomic physics. Adv. Chem. Phys. 14, 129–190 (1969)Google Scholar
  33. 33.
    Kümmel, H.: In: E.R. Caianiello (ed.) Lecture Notes on Many-Body Problems. Academic Press, N.Y. (1962)Google Scholar
  34. 34.
    Kümmel, H., Lührman, K.H., Zabolitsky, J.G.: Many-fermion theory in exp S (or coupled cluster) form. Phys. Rep. 36, 1–135 (1978)Google Scholar
  35. 35.
    Kutzelnigg, W.: Methods in Electronic Structure Theory. Plenum, New York (1977)Google Scholar
  36. 36.
    Kvasnička, V.: Construction of Model Hamiltonians in framework of Rayleigh- Schrodinger perturbation-theory. Czech. J. Phys. B 24, 605 (1974)Google Scholar
  37. 37.
    Lindgren, I.: The Rayleigh-Schrödinger perturbation and the linked-diagram theorem for a multi-configurational model space. J. Phys. B 7, 2441–70 (1974)Google Scholar
  38. 38.
    Lindgren, I.: A Coupled-Cluster Approach to the Many-Body Perturbation Theory for Open-Shell Systems. Int. J. Quantum Chem. S12, 33–58 (1978)Google Scholar
  39. 39.
    Lindgren, I.: Accurate many-body calculations on the lowest 2 S and 2 P states of the lithium atom. Phys. Rev. A 31, 1273–86 (1985)Google Scholar
  40. 40.
    Lindgren, I., Morrison, J.: Atomic Many-Body Theory. Second edition, Springer-Verlag, Berlin (1986, reprinted 2009)Google Scholar
  41. 41.
    Lindgren, I., Mukherjee, D.: On the connectivity criteria in the open-shell coupled-cluster theory for the general model spaces. Phys. Rep. 151, 93–127 (1987)Google Scholar
  42. 42.
    Lindgren, I., Salomonson, S.: A Numerical Coupled-Cluster Procedure Applied to the Closed-Shell Atoms Be and Ne. Presented at the Nobel Symposium on Many-Body Effects in Atoms and Solids, Lerum, 1979. Physica Scripta 21, 335–42 (1980)Google Scholar
  43. 43.
    Lindroth, E.: Numerical soultion of the relativistic pair equation. Phys. Rev. A 37, 316–28 (1988)Google Scholar
  44. 44.
    Lindroth, E., Mårtensson-Pendrill, A.M.: 2p 21 S state of Beryllium. Phys. Rev. A 53, 3151–56 (1996)Google Scholar
  45. 45.
    Löwdin, P.O.: Studies in Perturbation Theory. X. Lower Bounds to Eigenvalues in Perturbation-Theory Ground State. Phys. Rev. 139, A357–72 (1965)Google Scholar
  46. 46.
    M. S. Safronova, W.R.J., Derevianko, A.: Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms. Phys. Rev. A 560, 4476–87 (1999)Google Scholar
  47. 47.
    Mahapatra, U.S., Datta, B., Mukherjee, D.: Size-consistent state-specific multireference couloed cluster theory: Formal developmnents and molecular applications. J. Chem. Phys. 110, 6171–88 (1999)Google Scholar
  48. 48.
    Malinowski, P., Jankowski, K.: A valence-universal coupled-cluster single- and double-excitation method for atoms. I. Theory and application to the C 2+ ion. J. Phys. B 26, 3035–56 (1993)Google Scholar
  49. 49.
    Mårtensson, A.M.: An Iterative, Numerical Procedure to obtain Pair Functions Applied to Two-electron Systems. J. Phys. B 12, 3995–4012 (1980)Google Scholar
  50. 50.
    Mårtensson-Pendrill, A.M., Lindgren, I., Lindroth, E., Salomonson, S., Staudte, D.S.: Convergence of relativistic perturbation theory for the 1s2p states in low-Z heliumlike systems. Phys. Rev. A 51, 3630–35 (1995)Google Scholar
  51. 51.
    Meissner, L., Malinowski, P.: Intermediate Hamiltonian formulation of the valence-universal coupled-cluster method for atoms. Phys. Rev. A 61, 062,510 (2000)Google Scholar
  52. 52.
    Meyer, W.: PNO-CI studies of electron correlation effects. 1. Configuration expansion by means of nonorthogonal orbitals, and application to ground-state and ionized states of methane. J. Chem. Phys. 58, 1017–35 (1973)Google Scholar
  53. 53.
    Møller, C., Plesset, M.S.: Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 46, 618–22 (1934)Google Scholar
  54. 54.
    Morrison, J.: Many-Body calculations for the heavy atoms. III. Pair correlations. J. Phys. B 6, 2205–12 (1973)Google Scholar
  55. 55.
    Morrison, J., Salomonson, S.: Many-Body Perturbation Theory of the Effective Electron-Electron Interaction for Open-shell Atoms. Presented at the Nobel Symposium.., Lerum, 1979. Physica Scripta 21, 343–50 (1980)Google Scholar
  56. 56.
    Mukherjee, D.: Linked-Cluster Theorem in the Open-Shell Coupled-Cluster Theory for Incomplete Model Spaces. Chem. Phys. Lett. 125, 207–12 (1986)Google Scholar
  57. 57.
    Mukherjee, D., Moitra, R.K., Mukhopadhyay, A.: Application of non-perturbative many-body formalism to open-shell atomic and molecular problems - calculation of ground and lowest π − π singlet and triplet energies and first ionization potential of trans-butadine. Mol. Phys 33, 955–969 (1977)Google Scholar
  58. 58.
    Mukherjee, D., Pal, J.:. Adv. Chem. Phys. 20, 292 (1989)Google Scholar
  59. 59.
    Nesbet, R.K.: Electronic correlation in atoms and molecules. Adv. Chem. Phys. 14, 1 (1969)Google Scholar
  60. 60.
    Paldus, J., Čižek, J.: Time-Independent Diagrammatic Approach to Perturbation Theory of Fermion Systems. Adv. Quantum Chem. 9, 105–197 (1975)Google Scholar
  61. 61.
    Paldus, J., Čižek, J., Saute, M., Laforge, A.: Correlation problems in atomic and molecular systems. IV. Coupled-cluster approach to open shells. Phys. Rev. A 17, 805–15 (1978)Google Scholar
  62. 62.
    Plante, D.R., Johnson, W.R., Sapirstein, J.: Relativistic all-order many-body calculations of the n=1 and n=2 states of heliumlike ions. Phys. Rev. A 49, 3519–30 (1994)Google Scholar
  63. 63.
    Pople, J.A., Krishnan, R., Schlegel, H.B., Binkley, J.S.: Electron Correlation Theories and Their Application to the Study of Simple Reaction Potential Surfaces. Int. J. Quantum Chem. 14, 545–60 (1978)Google Scholar
  64. 64.
    Pople, J.A., Santry, D.P., Segal, G.A.: Approximate self-consistent molecular orbital theory.I. Invariant procedures. J. Chem. Phys. 43, S129 (1965)Google Scholar
  65. 65.
    Pople, J.A., Segal, G.A.: Approximate self-consistent molecular orbital theory. 3. CNDO results for AB2 and AB3 systems. J. Chem. Phys. 44, 3289 (1966)Google Scholar
  66. 66.
    Purvis, G.D., Bartlett, R.J.: A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 76, 1910–18 (1982)Google Scholar
  67. 67.
    Safronova, M.S., Johnson, W.R.: All-Order Methods for Relativistic Atomic Structure Calculations, Advances in Atomic Molecular and Optical Physics series, vol. 55 (2007)Google Scholar
  68. 68.
    Safronova, M.S., Sapirstein, J., Johnson, W.R.: Relativistic many-body calculations of energy levels, hypeerfine constants, and transition rates for sodiumlike ions. Phys. Rev. A 58, 1016–28 (1998)Google Scholar
  69. 69.
    Salomonson, S., Lindgren, I., Mårtensson, A.M.: Numerical Many-Body Perturbation Calculations on Be-like Systems Using a Multi-Configurational Model Space. Presented at the Nobel Symposium on Many-Body Effects in Atoms and Solids, Lerum, 1979. Physica Scripta 21, 335–42 (1980)Google Scholar
  70. 70.
    Salomonson, S., Öster, P.: Numerical solution of the coupled-cluster single- and double-excitation equations with application to Be and Li . Phys. Rev. A 41, 4670–81 (1989)ADSCrossRefGoogle Scholar
  71. 71.
    Salomonson, S., Öster, P.: Relativistic all-order pair functions from a discretized single-particle Dirac Hamiltonian. Phys. Rev. A 40, 5548, 5559 (1989)Google Scholar
  72. 72.
    Salomonson, S., Ynnerman, A.: Coupled-cluster calculations of matrix elements and ionization energies of low-lying states of sodium. Phys. Rev. A 43, 88–94 (1991)Google Scholar
  73. 73.
    Salpeter, E.E., Bethe, H.A.: A Relativistic Equation for Bound-State Problems. Phys. Rev. 84, 1232–42 (1951)Google Scholar
  74. 74.
    Schäfer, L., Weidenmüller, H.A.: Self-consistency in application of Brueckner’s method to doubly-closed-shell nuclei. Nucl. Phys. A 174, 1 (1971)Google Scholar
  75. 75.
    Sinanŏglu, O.: Electronic correlation in atoms and molecules. Adv. Chem. Phys. 14, 237–81 (1969)Google Scholar
  76. 76.
    Sucher, J.: Energy Levels of the Two-Electron Atom to Order α 3 Ry; Ionization Energy of Helium. Phys. Rev. 109, 1010–11 (1957)Google Scholar
  77. 77.
    Sucher, J.: Ph.D. thesis, Columbia University (1958). Univ. Microfilm Internat., Ann Arbor, MichiganGoogle Scholar
  78. 78.
    Sucher, J.: Foundations of the Relativistic Theory of Many Electron Atoms. Phys. Rev. A 22, 348–62 (1980)Google Scholar
  79. 79.
    Čársky, P., Paldus, J., Pittner, J. (eds.): Recent Progress in Coupled Cluster Methods: Theory and Applications. Springer (2009)Google Scholar
  80. 80.
    Wick, C.G.: The Evaluation of the Collision Matrix. Phys. Rev. 80, 268–272 (1950)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GothenburgGöteborgSweden

Personalised recommendations