Regularization and Renormalization

  • Ingvar LindgrenEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 63)


(See, for instance, Mandl and Shaw [17, Chap. 9] and Peskin and Schroeder [23, Chap. 7].)


Ward Identity Dimensional Regularization Vertex Correction Coulomb Gauge Commutation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adkins, G.: One-loop renormalization of Coulomb-gauge QED. Phys. Rev. D 27, 1814–20 (1983)Google Scholar
  2. 2.
    Adkins, G.: One-loop vertex function in Coulomb-gauge QED. Phys. Rev. D 34, 2489–92 (1986)Google Scholar
  3. 3.
    Bethe, H.A.: The Electromagnetic Shift of Energy Levels. Phys. Rev. 72, 339–41 (1947)Google Scholar
  4. 4.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. Mc-Graw-Hill Pbl. Co, N.Y. (1964)Google Scholar
  5. 5.
    Blundell, S., Snyderman, N.J.: Basis-set approach to calculating the radiative self-energy in highly ionized atoms. Phys. Rev. A 44, R1427–30 (1991)Google Scholar
  6. 6.
    Brown, G.E., Langer, J.S., Schaeffer, G.W.: Lamb shift of a tightly bound electron. I. Method. Proc. R. Soc. London, Ser. A 251, 92–104 (1959)Google Scholar
  7. 7.
    Brown, G.E., Mayers, D.F.: Lamb shift of a tightly bound electron. II. Calculation for the K-electron in Hg. Proc. R. Soc. London, Ser. A 251, 105–109 (1959)Google Scholar
  8. 8.
    Cheng, K.T., Johnson, W.R.: Self-energy corrections to the K-electron binding energy in heavy and superheavy atoms. Phys. Rev. A 1, 1943–48 (1976)Google Scholar
  9. 9.
    Cheng, T.K., Johnson, W.R., Sapirstein, J.: Screend Lamb-shift calculations for Lithiumlike Uranium, Sodiumlike Platimun, and Copperlike Gold. Phys. Rev. Lett. 23, 2960–63 (1991)Google Scholar
  10. 10.
    Desiderio, A.M., Johnson, W.R.: Lamb Shift and Binding Energies of K Electrons in Heavy Atoms. Phys. Rev. A 3, 1267–75 (1971)Google Scholar
  11. 11.
    Heckarthon, D.: Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics. Nucl. Phys. B 156, 328–46 (1978)Google Scholar
  12. 12.
    Hedendahl, D.: p. (private communication)Google Scholar
  13. 13.
    Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill (1980)Google Scholar
  14. 14.
    Labzowsky, L.N., Mitrushenkov, A.O.: Renormalization of the second-order electron self-energy for a tightly bound atomic electron. Phys. Lett. A 198, 333–40 (1995)Google Scholar
  15. 15.
    Lindgren, I., Persson, H., Salomonson, S., Sunnergren, P.: Analysis of the electron self-energy for tightly bound electrons. Phys. Rev. A 58, 1001–15 (1998)Google Scholar
  16. 16.
    Lindgren, I., Persson, H., Salomonson, S., Ynnerman, A.: Bound-state self-energy calculation using partial-wave renormalization. Phys. Rev. A 47, R4555–58 (1993)Google Scholar
  17. 17.
    Mandl, F., Shaw, G.: Quantum Field Theory. John Wiley and Sons, New York (1986)Google Scholar
  18. 18.
    Mohr, P.J.: Numerical Evaluation of the 1s 1∕2 -State Radiative Level Shift. Ann. Phys. (N.Y.) 88, 52–87 (1974)Google Scholar
  19. 19.
    Mohr, P.J.: Self-Energy Radiative Corrections. Ann. Phys. (N.Y.) 88, 26–51 (1974)Google Scholar
  20. 20.
    Mohr, P.J.: Self-energy of the n = 2 states in a strong Coulomb field. Phys. Rev. A 26, 2338–54 (1982)Google Scholar
  21. 21.
    Pauli, W., Willars, F.: On the Invariant Regularization in Relativistic Quantum Theory. Rev. Mod. Phys. 21, 434–44 (1949)Google Scholar
  22. 22.
    Persson, H., Salomonson, S., Sunnergren, P.: Regularization Corrections to the Partial-Wave Renormalization Procedure. Presented at the conference Modern Trends in Atomic Physics, Hindås, Sweden, May, 1996. Adv. Quantum Chem. 30, 379–92 (1998)Google Scholar
  23. 23.
    Peskin, M.E., Schroeder, D.V.: An introduction to Quantun Field Theory. Addison-Wesley Publ. Co., Reading, Mass. (1995)Google Scholar
  24. 24.
    Quiney, H.M., Grant, I.P.: Atomic self-energy calculations using partial-wave mass renormalization. J. Phys. B 49, L299–304 (1994)Google Scholar
  25. 25.
    Snyderman, N.J.: Electron Radiative Self-Energy of Highly Stripped Heavy-Atoms. Ann. Phys. (N.Y.) 211, 43–86 (1991)Google Scholar
  26. 26.
    Sunnergren, P.: Complete One-Loop QED CAlculations for Few-Eleectron Ions. Ph.D. thesis, Department of Physics, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden (1998)Google Scholar
  27. 27.
    t’Hooft, G., Veltman, M.: Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GothenburgGöteborgSweden

Personalised recommendations