Skip to main content

The Arrow of Time In a Universe with a Positive Cosmological Constant Λ

  • Chapter
  • First Online:
Cosmic Update

Part of the book series: Multiversal Journeys ((MVJ))

  • 909 Accesses

Abstract

There is a mounting evidence that our universe is propelled into an accelerated expansion driven by Dark Energy. The simplest form of Dark Energy is a cosmological constant Λ, which is woven into the fabric of spacetime. For this reason it is often referred to as vacuum energy. It has the “strange” property of maintaining a constant energy density despite the expanding volume of the universe. Universes whose energy ismade of Λ posses an event horizon with and eternally finite constant temperature and entropy, and are known as DeSitter geometries. Since the entropy of DeSitter spaces remains a finite constant, then the meaning of a thermodynamic arrow of time becomes unclear. Here we explore the consequences of a fundamental cosmological constant Λ for our universe. We show that when the gravitational entropy of a pure DeSitter state ultimately dominates over the matter entropy, then the thermodynamic arrow of time in our universe may reverse in scales of order a Hubble time. We find that due to the dynamics of gravity and entanglement with other domain, a finite size system such as a DeSitter patch with horizon size H 0 -1 has a finite lifetime ∆t. This phenomenon arises from the dynamic gravitational instabilities that develop during a DeSitter epoch and turn catastrophic. A reversed arrow of time is in disagreementwith observations. Thus we explore the possibilities that: Nature may not favor a fundamental Λ, or else general relativity may be modified in the infrared regime when Λ dominates the expansion of the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.V. Peiris et al., Astrophys. J. Suppl. 148, 213 (2003) [astro-ph/0302225]

    Google Scholar 

  2. Sean carroll review of dark energy http://preposterousuniverse.com/reviewarticles.html

  3. G.W. Gibbons, S.W. Hawking, Phys. Rev.  D15, 2738 (1977)

    MathSciNet  ADS  Google Scholar 

  4. C. Kiefer Class. Quant. Grav. 4, 1369 (1987)

    Article  ADS  Google Scholar 

  5. J.J. Halliwell, S.W. Hawking, Phys. Rev. D 31, 1777 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  6. C. Kiefer, Phys. Rev. D. 38, 6 (1988): D.L. Wiltshire, “An introduction to quantum cosmology,” Talk published in ‘Cosmology:The Physics of the Universe’, (World Scientific, Singapore, 1996), pp. 473–531 [arXiv:gr-qc/0101003]

    Google Scholar 

  7. L. Susskind, [arXiv:hep-th/03-2219]; N. Goger, M. Kleban, L. Susskind, JHEP 0307, 056 (2003); L. Dyson, J. Lindsay, L. Susskind, JHEP 0208, 045 (2002) [arXiv:hep-th/0202163]

    Google Scholar 

  8. L. Dyson, M. Kleban, L. Susskind, JHEP 0210 (2002) [arXiv:hep-th/0208013]

    Google Scholar 

  9. E. Witten, (2001) [arXiv: hep-th/0106109]

    Google Scholar 

  10. A. Albrecht, L. Sorbo, Phys. Rev. D 70, 063528 (2004) [arXiv:hep-th/0405270]

    Google Scholar 

  11. C. Kiefer, H.D. Zeh, Phys. Rev.  D 51, 4145 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Bousso, JHEP 0011, 038 (2000) [arXiv:hep-th/0010252]; R. Bousso, A. Maloney, A. Strominger, Phys. Rev. D 65, 104039 (2002) [arXiv:hep-th/0112218]; N. Goher, M. Kleban, L. Susskind, JHEP 0307, 056 (2003) [arXiv:hep-th/0212209]

    Google Scholar 

  13. N. Kaloper, M. Kleban, A. Lawrence, S. Shenker, L. Susskind, JHEP 0211, 037 (2002) [arXiv:hep-th/0209231]

    Google Scholar 

  14. R. Holman, L. Mersini-Houghton [arXiv: hep-th/0511102]

    Google Scholar 

  15. R. Holman, L. Mersini-Houghton [arXiv: hep-th/0512070]

    Google Scholar 

  16. C. Kiefer, D. Polarski, A.A. Starobinsky, Phys.  Rev.  D 62, 043518, (2000) [arXiv:gr-qc/9910065]

    Google Scholar 

  17. C. Kiefer, Phys. Rev. D 46(4), 1658–1664 (1992)

    Article  ADS  Google Scholar 

  18. B. Freivogel, L. Susskind, Phys.  Rev.  D 70, 126007 (2004) [arXiv:hep-th/0408133]. R. Bousso, J. Polchinski, JHEP 0006, 006 (2000) [arXiv:hep-th/0004134]. T. Banks, M. Dinem E. Gorbatov, JHEP 0408, 058 (2004) [arXiv:hep-th/0309170]. M. Dine, E. Gorbatov, S. Thomas, [arXiv:hep-th/0407043]. M.R. Douglas, JHEP 0305, 046 (2003) [arXiv:hep-th/0303194]. F. Denef, M.R. Douglas, B. Florea, JHEP 0406, 034 (2004) [arXiv:hep-th/0404257]. F. Denef, M.R. Douglas, JHEP 0503, 061 (2005) [arXiv:hep-th/0411183]. M.R. Douglas, “Statistical analysis of the supersymmetry breaking scale,” [arXiv:hep-th/0405279]. M.R. Douglas, Comput. Rendus Phys. 5, 965–977 (2004) [arXiv:hep-th/0409207]

    Google Scholar 

  19. R.M. Wald, [arXiv:gr-qc/0507094]

    Google Scholar 

  20. L. Susskind, “The anthropic landscape of string theory,” [arXiv:hep-th/0302219]. L. Susskind, “Supersymmetry breaking in the anthropic landscape,” [arXiv:hep-th/0405189]

    Google Scholar 

  21. R. Bousso, JHEP 9907 (1999); R. Bousso, JHEP 0104, 035

    Google Scholar 

  22. S. Hannestad, L. Mersini-Houghton, Phys. Rev. D71, 123504 (2004) [arXiv:hep-ph/0405218]

    Google Scholar 

  23. M. Bastero-Gil, L. Mersini-Houghton, Phy. Rev. D65, 023502 (2001) [arXiv:astro-ph/0107256]; M. Bastero-Gil, K. Freese, L. Mersini-Houghton, Phys. Rev. D68, 123514 (2003) [arXiv:hep-ph/0306289]

    Google Scholar 

  24. A. Melchiorri, L. Mersini-Houghton, C.J. Odman, M. Trodden, Phys. Rev. D68, 043509

    Google Scholar 

  25. Chandra, Press Release (2006)

    Google Scholar 

  26. L. Mersini-Houghton, (2005) [arXiv: hep-th/0512304]

    Google Scholar 

  27. L. Mersini-Houghton, M. Bastero-Gil, P. Kanti, Phys. Rev. D64, 043508 (2001); M. Bastero-Gil, P. Frampton, L. Mersini-Houghton, Phys. Rev. D65, 106002 (2002); M. Bastero-Gil, L. Mersini-Houghton, Phys. Rev. D67, 103519 (2003)

    Google Scholar 

  28. R.R. Caldwell, Phys. Rev. Lett. 95, 141301 (2005) and references therein

    Google Scholar 

  29. G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B485, 208 (2000); S.M. Carroll, A. DeFelice, V. Duvvuri, D. Easson, M. Trodden, M.S. Turner, Phys. Rev. D71, 063513 (2005); S.M. Carroll, I. Sawicki, A. Silvestri, M. Trodden, (2006) [arXiv:astro-ph/0607458]

    Google Scholar 

  30. S.W. Hawking, Phys. Rev. D32, 2489 (1985); D.N. Page, Phys. Rev. D32, 2496 (1985)

    Google Scholar 

  31. R. Easther, E.A. Lim, M.R. Martin, JCAP 0603, 016 (2006)

    MathSciNet  ADS  Google Scholar 

  32. L. Mersini-Houghton, Class. Quant. Grav 22, 3481 (2005) [arXiv: hep-th/0504026]; A. Kobakhidze, L. Mersini-Houghton, (2004) [arXiv:hep-th/0410213]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Mersini-Houghton .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mersini-Houghton, L. (2012). The Arrow of Time In a Universe with a Positive Cosmological Constant Λ. In: Cosmic Update. Multiversal Journeys. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8294-0_2

Download citation

Publish with us

Policies and ethics