Skip to main content

Effective Conductivity of Percolation Media

  • Chapter
  • First Online:
Transport Processes in Macroscopically Disordered Media

Abstract

The analogy between percolation theory and theory of second-order phase transition is introduced. Effective conductivity is considered as the order parameter of phase transitions. Calculations of critical indexes are provided. Different models of percolation media are considered. Hierarchical model of percolation structure is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler J, Meir Y, Harris AB, Klein L (1990) Low-concentration series in general dimension. J Stat Phys 58:511–538

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Baranovskii SD, Rubel O, Thomas P (2005) Theoretical description of hopping transport in disordered materials. Thin Solid Films 487:2–7

    Article  ADS  Google Scholar 

  3. Barthelemy M (2000) Path-integral approach to strongly nonlinear composites. Phys Rev B 62:8576–8579

    Article  ADS  Google Scholar 

  4. Broadbent SR, Hammersley JM (1957) Percolation processes. In crystals and mazes. Proc Camb Phyl Soc 53:629–633

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bulat LP, Osvenskii VB, Pshenai-Severin DA (2013) Influence of grain size distribution on the lattice thermal conductivity of Bi2Te3-Sb2Te3-based nanostructured materials. Phys Solid State 55:2442–2449

    Article  ADS  Google Scholar 

  6. Bunde A, Heitjans P, Sylvio IS et al (2007) Anomalous transport and diffusion in percolation systems. Diffus Fundam 6:9.1–9.17

    Google Scholar 

  7. Cai W, Tu S, Gong J (2006) A physically based percolation model of the effective electrical conductivity of particle filled composites. J Compos Mater 40:2131–2142

    Article  Google Scholar 

  8. Clerc JP, Giraud G, Laugier JM, Luck JM (1990) The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models. Adv Phys 39:191–309

    Article  ADS  Google Scholar 

  9. Coniglio A (1981) thermal phase transition of the dilute s-State potts and n-Vector models at the percolation threshold. Phys Rev Lett 46:250–253

    Article  ADS  Google Scholar 

  10. Coniglio A (1982) Cluster structure near the percolation threshold. J Phys A 15:3829–3844

    Article  ADS  MathSciNet  Google Scholar 

  11. Coniglio A, Stanley HE (1984) Screening of deeply invaginated clusters and the critical behavior of the random superconducting network. Phys Rev Lett 52:1068–1071

    Article  ADS  Google Scholar 

  12. de Arcangelis L, Redner S, Coniglio A (1985) Anomalous voltage distribution of random resistor networks and new model for the backbone at the percolation threshold. Phys Rev B 31:4725–4727

    Article  ADS  Google Scholar 

  13. de Gennes PGJ (1976) On relation between percolation theory and the elasticity of gels. Phys Lett 37:L1–2

    Google Scholar 

  14. Dieterich W, Durr O, Pendzig P et al (1999) Percolation concepts in solid state ionics. Phys A 266:229–237

    Article  Google Scholar 

  15. Efros AL, Shklovskii BI (1976) Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold. Phys Stat Sol B 76:475–485

    Article  ADS  Google Scholar 

  16. Feder J (1988) Fractals. Plenum Press, New York, 283 p

    Google Scholar 

  17. Fisch R, Harris AB (1978) Critical behavior of random resistor networks near the percolation threshold. Phys Rev B 18:416–420

    Article  ADS  Google Scholar 

  18. Harris B (1987) Field-theoretic formulation of the randomly diluted nonlinear resistor network. Phys Rev B 35:5056–5065

    Article  ADS  Google Scholar 

  19. Harris AB, Lubensky TC (1987) Randomly diluted xy and resistor networks near the percolation threshold. Phys Rev B 35:6964–6986

    Article  ADS  Google Scholar 

  20. Hunt A, Ewing R, Ghanbarian B (2014) Percolation theory for flow in porous media. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Isichenko MB (1992) Percolation, statistical topography, and transport in random media. Rev Mod Phys 64:961–1043

    Article  ADS  MathSciNet  Google Scholar 

  22. Kasteleyn PW, Fortuin CM (1969) Phase transition in lattice systems with random local properties. J Phys Soc Jpn Suppl 26:11

    ADS  Google Scholar 

  23. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  ADS  Google Scholar 

  24. Kirkpatrick S (1977) Percolation thresholds in Ising magnets and conducting mixtures. Phys Rev 15:1533–1538

    Article  ADS  Google Scholar 

  25. Landau LD, Lifshitz EM (1980) Statistical physics,vol 5, 3rd edn. Butterworth-Heinemann, Oxford, 544 p

    Google Scholar 

  26. Last BJ, Thouless DJ (1977) Percolation theory and electrical conductivity. Phys Rev Lett 27:1719–1721

    Article  ADS  Google Scholar 

  27. Liang LH, Wei YG, Li Baowen (2008) Thermal conductivity of composites with nanoscale inclusions and size-dependent percolation. J Phys Condens Matter 20:365201

    Article  ADS  Google Scholar 

  28. Lubensky TC, Harris B (1987) Potts-model formulation of the random resistor network. Phys Rev B 35:6987–6996

    Article  ADS  Google Scholar 

  29. Luk’yanets SP, Snarskii AA (1988) Model of macroscopically inhomogeneous mixtures of a perfect conductor and an insulator near the mobility edge. Sov Phys JETP 67:1467–1470

    Google Scholar 

  30. Ma Shang-Keng (1980) Modern theory of critical phenomena. Westview Press, New York, 561 p

    Google Scholar 

  31. Mandelbrot BB, Given JA (1984) Physical properties of a new fractal model of percolation clusters. Phys Rev Lett 52:1853–1856

    Article  ADS  Google Scholar 

  32. Morozovsky AE, Snarskii AA (1988) Critical behaviour of 1/f noise in percolation systems Preprint IMF AN USSR, 31.88 p. 15 (in Russian)

    Google Scholar 

  33. Morozovsky AE, Snarskii AA (1989) Critical behaviour of 1/f noise in percolation systems. Sov Phys JETP 68:1066–1069

    Google Scholar 

  34. Morozovsky AE, Snarskii AA (1992) Multiscaling in randomly inhomogeneous media: effective conductivity, relative spectral density of 1/f noise, and higher-order moments. Sov Phys JETP. 75:366–371

    Google Scholar 

  35. Morsli M, Bonnet A, Samir F (1996) Electrical conductivity and thermoelectric power of polybithiophene-polystyrene composites. Synth Met 76:273–276

    Article  Google Scholar 

  36. Nigro B, Ambrosetti G, Grimaldi C et al (2011) Transport properties of nonhomogeneous segregated composites. Phys Rev B 83:064203-1–064203-10

    Google Scholar 

  37. Ofir A, Dor S, Grinis L et al (2008) Porosity dependence of electron percolation in nanoporous TiO2 layers. J Chem Phys 128:064703

    Google Scholar 

  38. Ohtsuki T, Keyes T (1984) Conduction in random networks on super-normal conductors: geometrical interpretation and enhancement of nonlinearity. J Phys A 11:L559–L563

    Article  MathSciNet  Google Scholar 

  39. Patashinskii AZ, Pokrovskii VL (1979) Fluctuation theory of phase transitions. Pergamon, Oxford, 321 p

    Google Scholar 

  40. Pike R, Stanley HE (1981) Order propagation near the percolation threshold. J Phys A 14:L169–L177

    Article  ADS  Google Scholar 

  41. Reynolds PS, Klein W, Stanley HE (1977) A real-space renormalization group for site and bond percolation. J Phys C 10:L167–L172

    Article  ADS  Google Scholar 

  42. Rossi E, Sarma SD (2011) Inhomogenous electronic structure, transport gap, and percolation threshold in disordered bilayer graphene. Phys Rev Lett 107: 155502-1–155502-5

    Google Scholar 

  43. Sarychev AK, Vinogradov AP (1981) Drop model of infinite cluster for 2D percolation. J Phys C 14:L487–L490

    Article  ADS  Google Scholar 

  44. Shklovskii BI (1977) Critical behavior of the Hall coefficient near the percolation threshold. Sov Phys JETP 45:152–156

    ADS  Google Scholar 

  45. Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, Berlin, 388 p

    Google Scholar 

  46. Skaggs TH (2011) Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore networks. Adv Water Resour 34:1335–1342

    Article  ADS  Google Scholar 

  47. Skal AS, Shklovskii BI (1974) Topology of infinite cluster in the theory of percolation and hopping conduction. Sov Phys Semicond 8:1586–1592 (in Russian)

    Google Scholar 

  48. Snarskii AA (1986) Effective conductivity of strongly inhomogeneous media near the percolation threshold. Sov Phys JETP 64:828–831

    Google Scholar 

  49. Snarskii AA, Morozovsky AE (1995) Percolation structure model in the smearing region. Int J Electron 78:135–137

    Article  Google Scholar 

  50. Stanley HE (1977) Cluster shapes at the percolation threshold: an effective cluster dimensionality and its connection with critical-point exponents. J Phys A 10:L211–L220

    Article  ADS  Google Scholar 

  51. Stauffer D, Aharony A (1992) Introduction to percolation theory, 2nd edn. Taylor & Francis, 181

    Google Scholar 

  52. Stenull O, Janssen H (2008) Conductivity of continuum percolating systems. Phys Rev E 64:056105-1–056105-14

    Google Scholar 

  53. Stinchcombe RB, Watson BP (1976) Renormalization group approach for percolation conductivity. J Phys C 9:3221–3248

    Article  ADS  Google Scholar 

  54. Straley JP (1976) Critical phenomena in resistor networks. J Phys C 9:783–796

    Article  ADS  Google Scholar 

  55. Straley P (1980) Dimensionality-dependent scaling relations for conduction exponents. J Phys C 13:819–822

    Article  ADS  Google Scholar 

  56. Ukshe AE, Shmygleva LV, Pisareva AV et al (2013) Percolation model of conductivity of calix[n]arene-p-sulfonic acids. Russ J Electrochem 49:807–812

    Article  Google Scholar 

  57. Vinogradov AP (2001) Electrodynamics of composite materials. URSS, Moscow 208 p (in Russian)

    Google Scholar 

  58. Vinogradov AP, Sarychev AK (1983) Structure of percolation channels and the metal-insulator transition in composites. Sov Phys JETP 58:665–669

    Google Scholar 

  59. Wei Y, Li Z (2013) Observation of double percolation transitions in Ag-SnO2 nanogranular films. Appl Phys Lett 102:131911

    Article  ADS  Google Scholar 

  60. Wright DC, Bergman DJ, Kantor Y (1986) Resistance fluctuations in random resistor networks above and below the percolation threshold. Phys Rev B 33:396–401

    Article  ADS  Google Scholar 

  61. Wu Z, Liu M (1997) Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors. Solid State Ionics 93:65–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Snarskii .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Snarskii, A.A., Bezsudnov, I.V., Sevryukov, V.A., Morozovskiy, A., Malinsky, J. (2016). Effective Conductivity of Percolation Media. In: Transport Processes in Macroscopically Disordered Media. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8291-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8291-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8290-2

  • Online ISBN: 978-1-4419-8291-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics