Skip to main content

Percolation-Similar Description of Abrikosov Vortex

  • Chapter
  • First Online:
Transport Processes in Macroscopically Disordered Media

Abstract

Superconductivity on percolation structures is discussed. Pinning of Abricosov vortexes in films is introduced. Formulae for wide pinning force distribution are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrikosov AA (1988) Fundamentals of the theory of metals. North-Holland, Amsterdam 630 p(1988)

    Google Scholar 

  2. Arora BM, Varma M, Dhar D, Phani MK (1983) Conductivity of a two-dimensional random diode-insulator network. J Phys. C 16:2913–2922

    Article  ADS  Google Scholar 

  3. Balberg I, Binenbaum N (1986) Direct determination of the conductivity exponent in directed percolation. Phys Rev B V. 33, P. 2017–2019

    Google Scholar 

  4. Bianconi C (2013) Superconductor-insulator transition in a network of 2d percolation clusters. Lett J Exploring Front Phys 101:26003-1–26003-6

    Google Scholar 

  5. de Mello EVL, Caixeiro ES, Gonzalez JL (2002) A novel percolation theory for high temperature superconductors. Braz J Phys 32:705–709

    Google Scholar 

  6. de Mello EVL, Caixeiro ES, Gonzalez JL (2003) Is the superconducting state for the cuprates reached through a percolation transition? Act Phys Pol B 34:563–566

    Google Scholar 

  7. de Mello EVL, Dias DHN (2007) Phase separation and the phase diagram in cuprites superconductors. J Phys Condens Matter 19:086218-1–086218-9

    Google Scholar 

  8. De’Bell K, Essam JW (1983) Directed percolation: mean field theory and series expansions for some two-dimensional lattices. J Phys A 16:P.385–404

    Google Scholar 

  9. Dhar D, Barma M (1981) Monte Carlo simulation of directed percolation on a square lattice. J Phys C 14:L1–L6

    Article  ADS  Google Scholar 

  10. Dogru O, Andrei EY, Higgins MJ et al (2005) Percolation transition in the heterogeneous vortex state of NbSe2. Phys Rev Lett 95:057004-1–057004-4

    Google Scholar 

  11. Eisterer M, Zehetmayer M, Weber HW et al (2010) Disorder effects and current percolation in FeAs based superconductors. Supercond Sci Technol 23:0540061–0540067

    Google Scholar 

  12. Essam JW, De’Bell K, Adler J, Bhatti FM (1986) Analysis of extended series for bond percolation on the directed square lattice. Phys Rev B 33:1982–1986

    Google Scholar 

  13. Forgacs G, Schulman LS, Kiss LB (1991) Method for determining the distribution of Josephson coupling energies in high- TC superconductors. Physica C 177:67–72

    Google Scholar 

  14. Gavrilkin SYu, Ivanenko OM, Martovitskii VP (2010) Percolative nature of the transition from 60 K to 90 K—phase in YBa2Cu3O6 + δ. J Exp Theor Phys 110:783–787

    Article  ADS  Google Scholar 

  15. Glukhov AM, Pokhila AS, Dmitrenko IM et al (1997) Superconducting quantum interference in fractal percolation films. Probl 1/f Noise Phys B 240:242–253

    Google Scholar 

  16. Glukhov AM, Sivakov AG, Ustinov AV (2002) Observation of stochastic resonance in percolative Josephson media. Low Temp Phys 28:543–547

    Article  Google Scholar 

  17. Granato E (1997) Current-voltage characteristics of diluted Josephson-junction arrays: scaling behavior at current and percolation threshold. Phys Rev B 56:14671–14676

    Article  ADS  Google Scholar 

  18. Janssen H-K, Stenull O (2003) Percolating granular superconductors. Phys Rev E 67:046115-1–046115-8

    Google Scholar 

  19. Kinzel W, Yeomanis M (1991) Directed percolation: a finite-size renormalisation group approach. J Phys A 14:L163–L168

    Article  Google Scholar 

  20. Knudsen HA, Hansen A (2000) Diamagnetic susceptibility and current distributions in granular superconductors at percolation. Phys Rev B 61:11336–11339

    Google Scholar 

  21. Kuzmin YI (2000) Fractal geometry of normal phase clusters and magnetic flux trapping in high-tc superconductors. Phys Lett A 267:66–70

    Article  ADS  Google Scholar 

  22. Kuzmin YI (2001) Dynamics of the magnetic flux trapped in fractal clusters of a normal phase in superconductor. Phys Rev B 64:094519-1–094519-11

    Google Scholar 

  23. Kuzmin YI (2001) Resistive state of superconducting structures with fractal clusters of a normal phase. Phys Solid State 43:1199–1206

    Article  ADS  Google Scholar 

  24. Kuzmin YI (2002) Giant dispersion of critical currents in superconductor with fractal clusters of a normal phase. Tech Phys Lett 28:568–571

    Article  ADS  Google Scholar 

  25. Kuzmin YI (2003) Peculiarities of the resistive transition in fractal superconducting structures. Tech Phys Lett 29:414–417

    Article  ADS  Google Scholar 

  26. Kuzmin YI (2005) Vortex dynamics in percolative superconductors containing fractal clusters of a normal phase. Trans Appl Supercond 15:3750–3753

    Article  Google Scholar 

  27. Liu X, Panguluri RP, Huang Z et al (2010) Double percolation transition in superconductor-ferromagnet nanocomposites. Phys Rev Lett 104:035701-1–035701-4

    Google Scholar 

  28. Mayoh J, García-García AM (2014) Strong enhancement of bulk superconductivity by engineered nanogranularity. Phys Rev B 90:134513-1–134513-11

    Google Scholar 

  29. Mihailovic D, Kabanov VV (2005) Dynamic inhomogeneity, pairing and superconductivity in cuprates. In: Chapter superconductivity in complex systems vol 114 of the series structure and bonding, pp 331–364

    Google Scholar 

  30. Osofsky MS, Cohn JL, Skelton EF et al (1992) Percolation effects and oxygen inhomogeneities in YBa2Cu307 crystals. Phys Rev B 45:4916–4922

    Article  ADS  Google Scholar 

  31. Pfeiffer FO, Rieger H (2002) Superconductor-to-normal phase transition in a vortex glass model: numerical evidence for a new percolation universality class. J Phys Condens Matter 14:2361–2369

    Article  ADS  Google Scholar 

  32. Porat E, Meir Y (2015) Magnetoresistance anisotropy in amorphous superconducting thin films: a site-bond percolation approach. Phys Rev B 92:024509-1–024509-5

    Google Scholar 

  33. Palti AM, Ruban AI, Snarskii AA (1998) Resistive state of HTSC film in a varying magnetic field. Low Temp Phys 24:336–339

    Article  ADS  Google Scholar 

  34. Phillips JC (2007) Self-organized networks and lattice effects in high temperature superconductors. Phys Rev B 75:214503-1–214503-22

    Google Scholar 

  35. Poccia N, Chorro M, Ricci A et al (2014) Percolative superconductivity in La2CuO4.06 by lattice granularity patterns with scanning micro X-ray absorption near edge structure. Appl Phys Lett 104:221903-1–221903-9

    Google Scholar 

  36. Redner S (1982) Directed and diode percolation. Phys Rev B 25:3242–3250

    Google Scholar 

  37. Redner S (1982) Conductivity of random resistor-diode networks. Phys Rev B 25:5646–5655

    Google Scholar 

  38. Redner S, Mueller PR (1982) Conductivity of a random directed-diode network near the percolation threshold. Phys Rev B 26:5293–5295

    Google Scholar 

  39. Ruiz-Valdepenas L, Velez M, Valdes-Bango F et al (2013) Double percolation effects and fractal behavior in magnetic/superconducting hybrids. New J Phys 15(103025):1–13

    Google Scholar 

  40. Snarskii AA, Pashitskii EA, Pal’ti AM, Morozovskii AE (1995) Percolation mechanism for vortex depinning in the resistive state of thin films of type-II superconductors Sov. Phys JETP Lett 61:119–123

    ADS  Google Scholar 

  41. Snarskii AA, Pashitskii ÈA, Palti AM (1995) The diode percolation model of vortex flow in the resistive state of HTS films. Low Temp Phys 21:706–711

    ADS  Google Scholar 

  42. Solovjov VF, Pan VM, Freyhardt HC (1994) Anisotropic flux dynamics in single-crystalline and melt-textured YBa2Cu3O7. Phys Rev B 50:13724–13734

    Google Scholar 

  43. Sornette D (1988) Critical transport and failure in continuum crack percolation. J Phys France 49:1365–1377

    Google Scholar 

  44. Strelniker YM, Frydman A, Havlin S (2007) Percolation model for the superconductor-insulator transition in granular films. Phys Rev B 76:224528-1–224528-6

    Google Scholar 

  45. Strelniker YM, Havlin S, Frydman A (2007) Effective medium approximation for hopping conductivity and Josephson junctions. Phys B 394:368–371

    Article  ADS  Google Scholar 

  46. Tahir-Kheli J, William AG III (2010) Universal properties of cuprate superconductors: Tc phase diagram. Room-temperature thermopower, neutron spin resonance, and STM incommensurability explained in terms of chiral plaquette pairing journal of physical chemistry letters, vol 1, pp 1290–1295

    Google Scholar 

  47. Tahir-Kheli J (2013) Resistance of high-temperature cuprate superconductors. New J Phys 15:073020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Snarskii .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Snarskii, A.A., Bezsudnov, I.V., Sevryukov, V.A., Morozovskiy, A., Malinsky, J. (2016). Percolation-Similar Description of Abrikosov Vortex. In: Transport Processes in Macroscopically Disordered Media. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8291-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8291-9_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8290-2

  • Online ISBN: 978-1-4419-8291-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics