Temperature Coefficient of Resistance and Third Harmonic Generation Close to Percolation Threshold

  • Andrei A. Snarskii
  • Igor V. Bezsudnov
  • Vladimir A. Sevryukov
  • Alexander Morozovskiy
  • Joseph Malinsky
Chapter

Abstract

Temperature coefficient of resistance near percolation threshold is provided. Relation to the third harmonic generation is discussed.

Keywords

Temperature coefficient of resistance in composites Third harmonic generation 

References

  1. 1.
    Aleskerov FK, Kakhramanov KS, Kakhramanov SS (2012) Percolation effect in copper-and nickel-doped Bi2Te3 crystals. Inorg Mater 48:456–461CrossRefGoogle Scholar
  2. 2.
    Dubson MA, Hui YC, Weissman MB, Garland JC (1989) Measurement of the fourth moment of the current distribution in two-dimensional random resistor networks. Phys Rev B 39:6807–6815ADSCrossRefGoogle Scholar
  3. 3.
    Kharlamov FV, Kharlamov F (2014) Dependency, the thermoelectric figure of merit of a material consisting of particles on the parameters of a material. J Appl Math Phys 2:953–959CrossRefGoogle Scholar
  4. 4.
    Kono A, Shimizu K, Nakano H et al (2012) Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites. Polymer 53:1760–1764CrossRefGoogle Scholar
  5. 5.
    Licznerski BW (1990) Thick-film cermets, their physical properties and application. Int J Elect 69:79–85CrossRefGoogle Scholar
  6. 6.
    Satanin MA, Snarskii AA, Slichenko KV, Bezsudnov IV (1998) Harmonic generation in microinhomogeneous composites. Tech Phys 43:602–604CrossRefGoogle Scholar
  7. 7.
    Snarskii AA (1995) Generation of third harmonic in strongly inhomogeneous composites near the percolation threshold. Tech Phys Lett 21:3–8 (in Russian)ADSGoogle Scholar
  8. 8.
    Snarskii AA, Dziedzic A, Licznerski BW (1996) Temperature behaviour of percolation-like systems. Int J Elect 81:363–370CrossRefGoogle Scholar
  9. 9.
    Weissman MB, Dollinger CD (1981) Noise from equilibrium enthalpy fluctuations in resistors. J Appl Phys 52:3095–3098ADSCrossRefGoogle Scholar
  10. 10.
    Yagil Y, Deutscher G, Bergman DJ (1993) The role of microgeometry in the electrical breakdown of metal-insulator mixtures. Int J Mod Phys B 7:3353–3374ADSCrossRefGoogle Scholar
  11. 11.
    Yagil Y, Deutscher G (1992) Third-harmonic generation in semicontinuons metal films. Phys Rev B 46:16115–16121ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  • Andrei A. Snarskii
    • 1
  • Igor V. Bezsudnov
    • 2
  • Vladimir A. Sevryukov
    • 3
  • Alexander Morozovskiy
    • 4
  • Joseph Malinsky
    • 5
  1. 1.Department of General and Theoretical PhysicsNational Technical University of Ukraine “KPI”KievUkraine
  2. 2.Research and DevelopmentZAO “NPP Nauka-Service”MoscowRussia
  3. 3.ZAO “NPP Nauka-Service”MoscowRussia
  4. 4.CitibankStaten IslandUSA
  5. 5.BCCCUNY Graduate Center, Physics ProgramLivingstonUSA

Personalised recommendations