Skip to main content

Thermoelectric Properties

  • Chapter
  • First Online:
Transport Processes in Macroscopically Disordered Media

Abstract

Thermoelectric properties of composite media are discussed (EMT-approximations, self-dual media, and percolation systems). Critical exponents near percolation threshold are derived. Isomorphism method for obtaining effective thermoelectric properties is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abroyan IA, Velichko VY, Chudnovsky FA (1985) Electric conductivity and thermoEMF in the area of two-dimensional flow with metal-semiconductor phase transition. Fizika of Solid State 27:1667–1669 (in Russian)

    Google Scholar 

  2. Ausloos M, Pekala M, Latuch J et al (2004) Unusual thermoelectric behavior of packed crystalline granular metals. J Appl Phys 96:7338–7345

    Article  ADS  Google Scholar 

  3. Balagurov BY (1981) Reciprocity relations in two-dimensional percolation theory. Sov Phys JETP 54:355–358

    Google Scholar 

  4. Balagurov BY (1982) Thermoelectric properties of inhomogeneous thin films. Sov Phys Semicond 16:259–265 (in Russian)

    Google Scholar 

  5. Balagurov BY (1983) Isomorphism of certain problems of percolation theory. Sov Phys JETP T.58:331–340

    MathSciNet  Google Scholar 

  6. Balagurov BY (1985) Thermoelectric properties of polycristals. Sov Phys Semicond 19:968–970 (in Russian)

    Google Scholar 

  7. Balagurov BY (1986) On thermoelectric properties of two-component media. Sov Phys Semicond 20:1276–1280 (in Russian)

    Google Scholar 

  8. Balagurov BY (1986) Thermogalvanomagnetic properties of two-dimensional two-component systems. Sov Phys Solid State 28:1156–1162

    Google Scholar 

  9. Bergman DJ, Fel L (1999) Enhancement of thermoelectric power factor in composite thermoelectric. J Appl Phys 85:8205–8216

    Article  ADS  Google Scholar 

  10. Bergman DJ, Levy O (1991) Thermoelectric properties of a composite medium. J Appl Phys 70:6821–6833

    Article  ADS  Google Scholar 

  11. Bulat LP, Drabkin IA, Karatayev VV et al (2013) Structure and transport properties of bulk nanothermoelectrics based on Bix Sb2−x Te3 fabricated by SPS method. J Electron Mater 42:2110–2113

    Article  ADS  Google Scholar 

  12. Burshtein A (1962) Physical basis of calculation of thermoelectric semiconductor devices. Fiz-Mat Liter 135 [Moscow (in Russian)]

    Google Scholar 

  13. Drabkin IA, Karataev VV, Osvenski VB et al (2013) Structure and thermoelectric properties of nanostructured (Bi, Sb)2 Te3 (review). Adv Mater Phys Chem 119–132

    Google Scholar 

  14. Dykhne AM (1970) Contluctivity of a two-dimensional two-phase system. Sov Phys JETP 32:63–64

    ADS  Google Scholar 

  15. Dykhne AM (1980) Private communication

    Google Scholar 

  16. Faleev SV, Léonard F (2008) Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys Rev B 77:214304-1–214304-9

    Article  ADS  Google Scholar 

  17. Glatz A, Beloborodov IS (2009) Thermoelectric performance of granular semiconductors. Phys Rev B 80:245440-1–245440-4

    Article  ADS  Google Scholar 

  18. Halpern V (1983) The thermopower of binary mixtures. J Phys C 16:L217–L220

    Article  ADS  Google Scholar 

  19. Han G, Chen Z, Yang L et al (2015) Rational design of Bi2Te3 polycrystalline whiskers for thermoelectric applications. ACS Appl Mater Interfaces 7:989–995

    Article  Google Scholar 

  20. Markussen T, Jauho A, Brandbyge M (2009) Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics. Phys Rev Lett 103:055502-1–055502-5

    Article  ADS  Google Scholar 

  21. Murakami S, Takahashi R, Tretiakov OA et al (2011) Thermoelectric transport of perfectly conducting channels in two- and three-dimensional topological insulators. J Phys Conf Ser 334:012013-1–012013-10

    Article  ADS  Google Scholar 

  22. Neophytou N, Kosina H (2011) Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires. Phys Rev B 83:245305-1–245305-49

    Article  ADS  Google Scholar 

  23. Popescu A, Woods LM, Martin J et al (2009) Model of transport properties of thermoelectric nanocomposite materials. Phys Rev B 79:205302-1- 05302-7

    Google Scholar 

  24. Popescu A, Haney PM (2014) Interface scattering in polycrystalline thermoelectric. J Appl Phys 115:123701

    Article  ADS  Google Scholar 

  25. Sakai A, Kanno T, Takahashi K et al (2014) Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer. Scientific reports, 4

    Google Scholar 

  26. Samojlovich AG (1980) Eddy thermoelectric currents and energetic of anisotropic thermoelements (in problems of modern physics) Nauka, Leningrad, pp 304–318 (in Russian)

    Google Scholar 

  27. Scheele M, Oeschler N, Meier K et al (2009) Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv Func Mater 19:3476–3483

    Article  Google Scholar 

  28. Scheele M, Oeschler N, Veremchuk I et al (2010) ZT enhancement in solution-grown Sb(2−x)BixTe3 nanoplatelets. ACS Nano 4:4283–4291

    Article  Google Scholar 

  29. Skal AS (1985) Critical behavior of the thermoelectric power of binary composite materials. Sov Phys JETP T.61:301–305

    Google Scholar 

  30. Skal AS, Andreev AA, Tschirner HU (1982) Percolation theory and transport coefficient in disordered systems. Phyl Mag B 45:323–333

    Article  ADS  Google Scholar 

  31. Snarskii A (1986) Effective conductivity of strongly inhomogeneous media near the percolation threshold. Sov Phys JETP 64:828–831

    Google Scholar 

  32. Snarskii AA, Adzhigai GV, Bezsudnov IV (2006) On the inherent figure of merit of thermoelectric composites Arxiv cond-mat 0609447.pdf, 1–7

    Google Scholar 

  33. Snarskii AA, Adzhigai GV, Bezsudnov IV (2005) On the inherent figure of merit of themoelectric composites. Thermoelectricity 4:76–83

    Google Scholar 

  34. Snarskii AA, Morozovskii AE (1985) Variational estimates for thermoelectric media. Sov Phys Techn Semicond 19:187–188

    Google Scholar 

  35. Snarskii AA, Tomchuk PM (1987) Kinetic phenomena in macroscopic inhomogeneous media (review). Ukrain Fiz Jur 32:66–92 (in Russian)

    Google Scholar 

  36. Snarskii AA, Sarychev AK, Bezsudnov IV et al (2012) Thermoelectric figure of merit for bulk nanostructured composites with distributed parameters. Microcrystalline Nanocrystalline, Porous, and Compos Semicond 46:659–665

    Google Scholar 

  37. Straley JP (1981) Thermoelectric properties of inhomogeneous materials. J Phys D 14:2101–2106

    Article  ADS  Google Scholar 

  38. Webman I, Jortner J, Cohen MH (1977) Thermoelectric power in inhomogeneous materials. Phys Rev B 16:2959–2964

    Article  ADS  Google Scholar 

  39. Yamashita O, Odaharab H, Ochic T et al (2007) Dependence of Seebeck coefficient on a load resistance and energy conversion efficiency in a thermoelectric composite. Mater Res Bull 42:1785–1803

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Snarskii .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Snarskii, A.A., Bezsudnov, I.V., Sevryukov, V.A., Morozovskiy, A., Malinsky, J. (2016). Thermoelectric Properties. In: Transport Processes in Macroscopically Disordered Media. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8291-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8291-9_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8290-2

  • Online ISBN: 978-1-4419-8291-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics