Skip to main content

Nanopore Recordings to Quantify Activity-Related Properties of Proteins

  • Chapter
  • First Online:
Nanopores

Abstract

Electrical current recordings through electrolyte-filled nanopores (so called resistive pulse-sensing experiments) are attracting increasing attention for identifying and characterizing biomolecules. The majority of the work employing this method so far has focused on detection of oligonucleotides, polymers, and viruses. Most recently nanopores have been used to detect single proteins. This chapter reviews the very first attempts to use nanopores for characterizing properties of proteins that relate to their activity. The emphasis lies on those studies that provided quantitative information on activity-related properties of proteins, such as protein conformation, ligand binding, and enzyme activity. Nanopore-based studies have tremendous potential for investigating the function of proteins because the technique is capable of interrogating individual proteins at high-throughput without requiring labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This adapted equation normalized ΔI with respect to the baseline current of translocation events, I. With this equation, the diameter of the molecules, d m , could be determined: \( {d_m}^3 = s\frac{{\Delta I}}{I}({l_p} + 0.8{d_p}){d_p}^2 \), with \( s \approx 1 \).

  2. 2.

    The factor of 2 in the denominator of equation (9.2) is not present in the cited work by Talaga and Li. Working with Talaga and Li, we determined that the factor of 2 in the denominator is required for correct normalization such that the area of this probability density function equals 1.

  3. 3.

    Ion current rectification refers to the condition where the current at one polarity of the electric potential difference is significantly different than the current at the opposite polarity (i.e. the system has non-ohmic behavior). For more information see refs. [4042].

  4. 4.

    Aptamers are short DNA or RNA segments that have been selected from a large pool (>10,000) of molecules and enriched using the SELEX technology. They often have high affinity for their target K d  ~ 10−11.

  5. 5.

    The catalytic rate constant k cat describes the rate at which the enzyme-substrate complex is converted to the free enzyme and free product. The Michaelis constant, K m , is the concentration of substrate that results in the half-maximal velocity of the enzymatic reaction.

  6. 6.

    Gramicidin is a peptide consisting of 15 amino acids that spans one leaflet of a bilayer. If gA peptides are present in both leaflets of a bilayer, they can transiently form a dimer, which conducts monovalent cations through a central pore with diameter of ~4 Å. These transient ion channels result in discrete current values that reflect the number of ions passing through individual gA pores in a planar lipid bilayer at a given instant. Antonenko and coworkers first characterized the K d for the interaction of two monomers of gA that bind to form dimeric gA ion channels in a lipid bilayer [37].

References

  1. Ali M, Schiedt B, Healy K et al. (2008) Modifying the surface charge of single track-etched conical nanopores in polyimide. Nanotechnology, 19: 085713

    Article  Google Scholar 

  2. Ali M, Yameen B, Neumann R et al. (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J. Am. Chem. Soc., 130: 16351–16357

    Article  Google Scholar 

  3. Blake S, Capone R, Mayer M et al. (2008) Chemically reactive derivatives of gramicidin a for developing ion channel-based nanoprobes. Bioconjug. Chem., 19: 1614–1624

    Article  Google Scholar 

  4. Capone R, Blake S, Restrepo M R et al. (2007) Designing nanosensors based on charged derivatives of gramicidin a. J. Am. Chem. Soc., 129: 9737–9745

    Article  Google Scholar 

  5. Chang H, Venkatesan B M, Iqbal S M et al. (2006) DNA counterion current and saturation examined by a mems-based solid state nanopore sensor. Biomed. Microdevices, 8: 263–269

    Article  Google Scholar 

  6. Chun K Y and Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir, 18: 4653–4658

    Article  Google Scholar 

  7. Chun K Y, Mafe S, Ramirez P et al. (2006) Protein transport through gold-coated, charged nanopores: effects of applied voltage. Chem. Phys. Lett., 418: 561–564

    Article  Google Scholar 

  8. Clarke J, Wu H C, Jayasinghe L et al. (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol., 4: 265–270

    Article  Google Scholar 

  9. Cockroft S L, Chu J, Amorin M et al. (2008) A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc., 130: 818–820

    Article  Google Scholar 

  10. Copeland R A (2000) Enzymes. John Wiley & Sons, New York

    Book  Google Scholar 

  11. DeBlois R W and Bean C P (1970) Counting and sizing of submicron particles by the resistive pulse technique. Rev. Sci. Instrum., 41: 909–916

    Article  Google Scholar 

  12. Ding S, Gao C L and Gu L Q (2009) Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal. Chem., 81: 6649–6655

    Article  Google Scholar 

  13. Fologea D, Ledden B, David S M et al. (2007) Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett., 91: 053901

    Article  Google Scholar 

  14. Hammann C H, Hamnett A and Vielstich W (1998) Electrochemistry. Wiley-VCH, New York

    Google Scholar 

  15. Han A, Creus M, Schurmann G et al. (2008) Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores. Anal. Chem., 80: 4651–4658

    Article  Google Scholar 

  16. Han A P, Schurmann G, Mondin G et al. (2006) Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett., 88: 093901

    Article  Google Scholar 

  17. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  18. Hladky S B and Haydon D A (1970) Discreteness of conductance change in bimolecular lipid membranes in presence of certain antibiotics. Nature, 225: 451–453

    Article  Google Scholar 

  19. Hou X, Guo W, Xia F et al. (2009) A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc., 131: 7800–7805

    Article  Google Scholar 

  20. Howorka S and Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem. Soc. Rev., 38: 2360–2384

    Article  Google Scholar 

  21. Howorka S, Nam J, Bayley H et al. (2004) Stochastic detection of monovalent and bivalent protein-ligand interactions. Angew. Chem. Int. Ed., 43: 842–846

    Article  Google Scholar 

  22. Howorka S, Movileanu L, Lu X et al. (2000) A protein pore with a single polymer chain tethered within the lumen. J. Am. Chem. Soc., 122: 2411–2416

    Article  Google Scholar 

  23. Jovanovic-Talisman T, Tetenbaum-Novatt J, McKenney A S et al. (2009) Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature, 457: 1023–1027

    Article  Google Scholar 

  24. Kasianowicz J J, Henrickson S E, Weetall H H et al. (2001) Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem., 73: 2268–2272

    Article  Google Scholar 

  25. Ku J-R and Stroeve P (2004) Protein diffusion in charged nanotubes: “On-off” Behavior of molecular transport. Langmuir, 20: 2030–2032

    Article  Google Scholar 

  26. Laitinen O H, Hytonen V P, Nordlund H R et al. (2006) Genetically engineered avidins and streptavidins. Cell. Mol. Life Sci., 63: 2992–3017

    Article  Google Scholar 

  27. Macrae M X, Blake S, Jiang X et al. (2009) A semi-synthetic ion channel platform for detection of phosphatase and protease activity. ACS Nano, 3: 3567–3580

    Article  Google Scholar 

  28. Majd S, Yusko E C, MacBriar A D et al. (2009) Gramicidin pores report the activity of membrane-active enzymes. J. Am. Chem. Soc., 131: 16119–16126

    Article  Google Scholar 

  29. Majd M, Yusko E C, Billeh Y N et al. (2010) Applications of biological pores in nanomedicine, sensing and nanoelectronics. Curr. Opin. in Biotechnol., 21: 439–476

    Google Scholar 

  30. Makarov D E (2009) Computer simulations and theory of protein translocation. Acc. Chem. Res., 42: 281–289

    Article  Google Scholar 

  31. Maxwell J C (1904) Treatise on Electricity and Magnetism. 3 ed. Clarendon: Oxford. Vol 1

    Google Scholar 

  32. Mayer M, Semetey V, Gitlin I et al. (2008) Using ion channel-forming peptides to quantify protein-ligand interactions. J. Am. Chem. Soc., 130: 1453–1465

    Article  Google Scholar 

  33. Movileanu L, Howorka S, Braha O et al. (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol., 18: 1091–1095

    Article  Google Scholar 

  34. Neher E and Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle-fibers. Nature, 260: 799–802

    Article  Google Scholar 

  35. Nelson D L and Cox M M (2008) Lehninger principles of biochemistry. W. H. Freeman and Company, New York

    Google Scholar 

  36. Oukhaled G, Mathe J, Biance A L et al. (2007) Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett., 98: 158101

    Article  Google Scholar 

  37. Rokitskaya T I, Antonenko Y N and Kotova E A (1996) Photodynamic inactivation of gramicidin channels: a flash-photolysis study. Biochim. Biophys. Acta Bioenerg., 1275: 221–226

    Article  Google Scholar 

  38. Saleh O A and Sohn L L (2003) Direct detection of antibody-antigen binding using an on-chip artificial pore. Proc. Natl. Acad. Sci. U.S.A., 100: 820–824

    Article  Google Scholar 

  39. Schneider S W, Larmer J, Henderson R M et al. (1998) Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflugers Arch., 435: 362–367

    Article  Google Scholar 

  40. Sexton L T, Horne L P, Sherrill S A et al. (2007) Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc., 129: 13144–13152

    Article  Google Scholar 

  41. Siwy Z, Heins E, Harrell C C et al. (2004) Conical-nanotube ion-current rectifiers: the role of surface charge. J. Am. Chem. Soc., 126: 10850–10851

    Article  Google Scholar 

  42. Siwy Z, Gu Y, Spohr H A et al. (2002) Rectification and voltage gating of ion currents in a nanofabricated pore. Europhys. Lett., 60: 349–355

    Article  Google Scholar 

  43. Siwy Z S (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater., 16: 735–746

    Article  Google Scholar 

  44. Smeets R M M, Keyser U F, Krapf D et al. (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett., 6: 89–95

    Article  Google Scholar 

  45. Storm A J, Storm C, Chen J H et al. (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett., 5: 1193–1197

    Article  Google Scholar 

  46. Talaga D S and Li J L (2009) Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc., 131: 9287–9297

    Article  Google Scholar 

  47. Uram J D and Mayer M (2007) Estimation of solid phase affinity constants using resistive-pulses from functionalized nanoparticles. Biosens. Bioelectron., 22: 1556–1560

    Article  Google Scholar 

  48. Uram J D, Ke K and Mayer M (2008) Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano., 2: 857–872

    Article  Google Scholar 

  49. Uram J D, Ke K, Hunt A J et al. (2006) Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. Angew. Chem. Int. Ed., 45: 2281–2285

    Article  Google Scholar 

  50. Uram J D, Ke K, Hunt A J et al. (2006) Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small, 2: 967–972

    Article  Google Scholar 

  51. Vlassiouk I, Kozel T R and Siwy Z S (2009) Biosensing with nanofluidic diodes. J. Am. Chem. Soc., 131: 8211–8220

    Article  Google Scholar 

  52. Yameen B, Ali M, Neumann R et al. (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett., 9: 2788–2793

    Article  Google Scholar 

  53. Yusko E C, An R and Mayer M (2010) Electroosmotic flow can generate ion current rectification in nano- and micropores. ACS Nano., 4: 477–487

    Google Scholar 

  54. Yusko E C, Johnson J M, Majd S et al. (2011) Controlling protein translocation through nanopores with bio-inspired fluid walls. Nature Nanotech., 6: 254–260

    Google Scholar 

  55. Zhao Q T, de Zoysa R S S, Wang D Q et al. (2009) Real-time monitoring of peptide cleavage using a nanopore probe. J. Am. Chem. Soc., 131: 6324–6325

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the following funding sources: National Institutes of Health (M.M., grant no. 1RO1GM081705), NSF Career Award (M.M., grant no. 0449088), AISIN/IMRA America Inc., and Thermo Fisher – CCG Collaborative Pilot Project Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yusko, E.C., Billeh, Y.N., Yang, J., Mayer, M. (2011). Nanopore Recordings to Quantify Activity-Related Properties of Proteins. In: Iqbal, S., Bashir, R. (eds) Nanopores. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8252-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8252-0_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8251-3

  • Online ISBN: 978-1-4419-8252-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics