Skip to main content

Solid State Nanopores for Selective Sensing of DNA

  • Chapter
  • First Online:
Nanopores

Abstract

This chapter focuses on the functionalized solid state nanopores for the purpose of rapidly and accurately sensing specific sequence of DNA. Fabrication processes are described, consisting of standard photolithography followed by using either a transmission electron microscope or a plasma polymer film to create and shrink the nanopore. The molecular dynamics of DNA-nanopore interactions are also discussed. Smaller pore diameter results in slower translocation of DNA through the nanopore, but increases van der waals force on the DNA and decreases the ionic current. Increase in applied voltage decreases the van der Waals force while increasing the ionic current and translocation velocity. Chemical functionalization of nanopores is then discussed. This allows a nanopore to be selective with translocating specific DNA sequence. This is done by modifying the surface in an attempt to control its surface charges and hydrophobicity. Probe DNA is used to functionalize the pore and achieve selectivity. In terms of sensing, perfect complementary DNA translocates faster than single-base-mismatch DNA. The flux can be measured from the current pulses when the translocating DNA blocks the nanopore under applied voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iqbal, S.M., D. Akin, and R. Bashir, Solid-state nanopore channels with DNA selectivity. nature nanotechnology, 2007. 2(4): p. 243–248.

    Google Scholar 

  2. Li, J., et al., Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(6843): p. 166–169.

    Article  Google Scholar 

  3. Stein, D., J. Li, and J.A. Golovchenko, Ion-beam sculpting time scales. Physical review letters, 2002. 89(27): p. 276106.

    Article  Google Scholar 

  4. Storm, A.J., et al., Fabrication of solid-state nanopores with single-nanometre precision. Nature materials, 2003. 2(8): p. 537–540.

    Article  Google Scholar 

  5. Wu, S., S.R. Park, and X.S. Ling, Lithography-free formation of nanopores in plastic membranes using laser heating. Nano Lett, 2006. 6(11): p. 2571–2576.

    Article  Google Scholar 

  6. Park, S.R., H. Peng, and X.S. Ling, Fabrication of nanopores in silicon chips using feedback chemical etching. Small, 2007. 3(1): p. 116.

    Article  Google Scholar 

  7. Chang, H., et al., Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope. Applied Physics Letters, 2006. 88: p. 103109.

    Article  Google Scholar 

  8. Sato, K., et al., Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation. Sensors & Actuators: A. Physical, 1999. 73(1–2): p. 131–137.

    Article  Google Scholar 

  9. Sundaram, K.B., A. Vijayakumar, and G. Subramanian, Smooth etching of silicon using TMAH and isopropyl alcohol for MEMS applications. Microelectronic Engineering, 2005. 77(3–4): p. 230–241.

    Article  Google Scholar 

  10. Biance, A.L., et al., Focused ion beam sculpted membranes for nanoscience tooling. Microelectronic Engineering, 2006. 83(4–9): p. 1474–1477.

    Article  Google Scholar 

  11. Gierak, J., et al., Sub-5 nm FIB direct patterning of nanodevices. Microelectronic Engineering, 2007. 84(5–8): p. 779–783.

    Article  Google Scholar 

  12. Gadgil, V.J., et al., Fabrication of nano structures in thin membranes with focused ion beam technology. Surface & Coatings Technology, 2009. 203(17–18): p. 2436–2441.

    Article  Google Scholar 

  13. Danelon, C., et al., Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Nano Lett, 2005. 5: p. 403–407.

    Article  Google Scholar 

  14. Nilsson, J., et al., Localized functionalization of single nanopores. Advanced Materials, 2006. 18(4): p. 427–431.

    Article  Google Scholar 

  15. Harrell, C.C., et al., DNA-nanotube artificial ion channels. Journal of the American Chemical Society, 2004. 126(48): p. 15646.

    Article  Google Scholar 

  16. Chen, P., et al., Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letters, 2004. 4(7): p. 1333–1337.

    Article  Google Scholar 

  17. Heng, J.B., et al., Stretching DNA using the electric field in a synthetic nanopore. Nano letters, 2005. 5(10): p. 1883.

    Article  Google Scholar 

  18. Kim, M.J., et al., Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater, 2006. 18(23): p. 3149–3153.

    Article  Google Scholar 

  19. Kim, M.J., et al., Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology, 2007. 18: p. 205302.

    Article  Google Scholar 

  20. Chapman, C.L., et al., Plasma polymer thin film depositions to regulate gas permeability through nanoporous track etched membranes. Journal of Membrane Science, 2008. 318(1–2): p. 137–144.

    Article  Google Scholar 

  21. Timmons, R.B. and A.J. Griggs, Pulsed plasma polymerizations. Plasma Polymer Films: p. 217–245.

    Google Scholar 

  22. Han, L.M. and R.B. Timmons, Pulsed-plasma polymerization of 1-vinyl-2-pyrrolidone: Synthesis of a linear polymer. Journal of Polymer Science Part A Polymer Chemistry, 1998. 36: p. 3121–3129.

    Article  Google Scholar 

  23. Zhang, J., et al., Investigation of the plasma polymer deposited from pyrrole. Thin solid films, 1997. 307(1–2): p. 14–20.

    Article  Google Scholar 

  24. Rinsch, C.L., et al., Pulsed radio frequency plasma polymerization of allyl alcohol: Controlled deposition of surface hydroxyl groups. Langmuir, 1996. 12(12): p. 2995–3002.

    Article  Google Scholar 

  25. Cross, J.D., E.A. Strychalski, and H.G. Craighead, Size-dependent DNA mobility in nanochannels. Journal of Applied Physics, 2007. 102: p. 024701.

    Article  Google Scholar 

  26. Fyta, M.G., et al., Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore. Arxiv preprint physics/0701029, 2007.

    Google Scholar 

  27. Ramachandran, A., et al., Characterization of DNA-Nanopore Interactions by Molecular Dynamics. American Journal of Biomedical Sciences, 2009. 1(4): p. 344–351.

    Article  Google Scholar 

  28. Kalé, L., et al., NAMD2: Greater Scalability for Parallel Molecular Dynamics* 1. Journal of Computational Physics, 1999. 151(1): p. 283–312.

    Article  MATH  Google Scholar 

  29. MacKerell Jr, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B-Condensed Phase, 1998. 102(18): p. 3586–3616.

    Google Scholar 

  30. Aksimentiev, A., et al., Microscopic kinetics of DNA translocation through synthetic nanopores. Biophysical journal, 2004. 87(3): p. 2086–2097.

    Article  Google Scholar 

  31. Meller, A., et al., Rapid nanopore discrimination between single polynucleotide molecules. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(3): p. 1079.

    Article  Google Scholar 

  32. Xiao, K.P., et al., A chloride ion-selective solvent polymeric membrane electrode based on a hydrogen bond forming ionophore. Anal. Chem, 1997. 69(6): p. 1038–1044.

    Article  Google Scholar 

  33. Minami, H., et al., AN EVALUATION OF SIGNAL AMPLIFICATION BY THE ION CHANNEL SEBSIR BASED ON A GLUTAMATE RECEPTOR ION CHANNEL PROTEIN. Analytical Sciences, 1991. 7(Supple): p. 1675–1676.

    Google Scholar 

  34. Kuramitz, H., et al., Electrochemical immunoassay at a 17-estradiol self-assembled monolayer electrode using a redox marker. The Analyst, 2003. 128(2): p. 182–186.

    Article  Google Scholar 

  35. Aoki, H. and Y. Umezawa, Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. The Analyst, 2003. 128(6): p. 681–685.

    Article  Google Scholar 

  36. Gadzekpo, V.P.Y., et al., Development of an ion-channel sensor for heparin detection. Analytica Chimica Acta, 2000. 411(1–2): p. 163–173.

    Article  Google Scholar 

  37. Ali, M., et al., Chemical modification of track-etched single conical nanopores inducing inversed inner wall polarity. GSI Annu. Rep. 2006, 2007. 1: p. 323.

    Google Scholar 

  38. Lee, S.B., et al., Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science, 2002. 296(5576): p. 2198.

    Article  Google Scholar 

  39. Siwy, Z., et al., Conical-nanotube ion-current rectifiers: the role of surface charge. Journal of the American Chemical Society, 2004. 126(35): p. 10850.

    Article  Google Scholar 

  40. Siwy, Z., et al., Protein biosensors based on biofunctionalized conical gold nanotubes. Journal of the American Chemical Society, 2005. 127(14): p. 5000.

    Article  Google Scholar 

  41. Manning, M., et al., A versatile multi-platform biochip surface attachment chemistry. Materials Science & Engineering C, 2003. 23(3): p. 347–351.

    Article  Google Scholar 

  42. Chen, P., et al., Probing single DNA molecule transport using fabricated nanopores. Nano Letters, 2004. 4(11): p. 2293–2298.

    Article  Google Scholar 

  43. Meller, A., L. Nivon, and D. Branton, Voltage-driven DNA translocations through a nanopore. Physical Review Letters, 2001. 86(15): p. 3435–3438.

    Article  Google Scholar 

  44. Fologea, D., et al., Slowing DNA translocation in a solid-state nanopore. Nano Lett., 2005. 5: p. 1734–1737.

    Article  Google Scholar 

  45. Kim, Y.R., et al., Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosensors and Bioelectronics, 2007. 22(12): p. 2926–2931.

    Article  Google Scholar 

  46. Guo, Z., et al., Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Research, 1994. 22(24): p. 5456.

    Article  Google Scholar 

  47. Balladur, V., A. Theretz, and B. Mandrand, Determination of the main forces driving DNA oligonucleotide adsorption onto aminated silica wafers. Journal of colloid and interface science, 1997. 194(2): p. 408–418.

    Article  Google Scholar 

  48. Fang, Y. and J.H. Hoh, Early intermediates in spermidine-induced DNA condensation on the surface of mica. J. Am. Chem. Soc, 1998. 120(35): p. 8903–8909.

    Article  Google Scholar 

  49. Umehara, S., et al., Current rectification with poly- l -lysine-coated quartz nanopipettes. Nano Lett, 2006. 6(11): p. 2486–2492.

    Article  Google Scholar 

  50. Wang, G., et al., Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc, 2006. 128(23): p. 7679–7686.

    Article  Google Scholar 

  51. Wanunu, M. and A. Meller, Chemically modified solid-state nanopores. Nano Letters, 2007. 7(6): p. 1580–1585.

    Article  Google Scholar 

  52. Jang, L.S. and H.K. Keng, Modified fabrication process of protein chips using a short-chain self-assembled monolayer. Biomedical Microdevices, 2008. 10(2): p. 203–211.

    Article  Google Scholar 

  53. Gyurcsányi, R.E., T. Vigassy, and E. Pretsch, Biorecognition-modulated ion fluxes through functionalized gold nanotubules as a novel label-free biosensing approach. Chemical Communications, 2003. 2003(20): p. 2560–2561.

    Article  Google Scholar 

  54. Zhao, Q., et al., Detecting SNPs using a synthetic nanopore. Nano letters, 2007. 7(6): p. 1680.

    Article  Google Scholar 

  55. Kohli, P., et al., DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science, 2004. 305(5686): p. 984.

    Article  Google Scholar 

  56. Vlassiouk, I., P. Takmakov, and S. Smirnov, Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir, 2005. 21(11): p. 4776–4778.

    Article  Google Scholar 

  57. Pretsch, E., The new wave of ion-selective electrodes. Trends in Analytical Chemistry, 2007. 26(1): p. 46–51.

    Article  Google Scholar 

  58. Howorka, S., S. Cheley, and H. Bayley, Sequence-specific detection of individual DNA strands using engineered nanopores. Nature biotechnology, 2001. 19(7): p. 636–639.

    Article  Google Scholar 

  59. Berezhkovskii, A.M. and S.M. Bezrukov, Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Biophysical journal, 2005. 88(3): p. 17–19.

    Article  Google Scholar 

  60. Bauer, W.R. and W. Nadler, Molecular transport through channels and pores: Effects of in-channel interactions and blocking. Proceedings of the National Academy of Sciences, 2006. 103(31): p. 11446.

    Article  Google Scholar 

  61. Chaara, M. and R.D. Noble, Effect of convective flow across a film on facilitated transport. Separation Science and Technology, 1989. 24(11): p. 893–903.

    Article  Google Scholar 

  62. Noble, R.D., Generalized microscopic mechanism of facilitated transport in fixed site carrier membranes. Journal of membrane science, 1992. 75(1–2): p. 121–129.

    Article  Google Scholar 

  63. Liu, Y. and S.M. Iqbal, A mesoscale model of DNA interaction with functionalized nanopore. Applied Physics Letters, 2009. 95: p. 223701.

    Article  Google Scholar 

  64. Brogan, K.L., et al., Direct oriented immobilization of F (ab) antibody fragments on gold. Analytica Chimica Acta, 2003. 496(1–2): p. 73–80.

    Article  Google Scholar 

  65. Kim, B.Y., et al., Direct Immobilization of Fabin Nanocapillaries for Manipulating Mass-Limited Samples. J. Am. Chem. Soc, 2007. 129(24): p. 7620–7626.

    Article  Google Scholar 

  66. Benson, D.E., et al., Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins. Science, 2001. 293(5535): p. 1641.

    Article  Google Scholar 

  67. Tripathi, A., et al., Nanobiosensor Design Utilizing a Periplasmic E. coli Receptor Protein Immobilized within Au/Polycarbonate Nanopores. Biosens. Bioelectron, 2003. 19: p. 249–259.

    Article  MathSciNet  Google Scholar 

  68. Uram, J.D., et al., Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small (Weinheim an der Bergstrasse, Germany), 2006. 2(8–9): p. 967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir M. Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Asghar, W., Billo, J.A., Iqbal, S.M. (2011). Solid State Nanopores for Selective Sensing of DNA. In: Iqbal, S., Bashir, R. (eds) Nanopores. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8252-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8252-0_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8251-3

  • Online ISBN: 978-1-4419-8252-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics