Skip to main content

Nanopore-Based DNA Sequencing and DNA Motion Control

  • Chapter
  • First Online:
Nanopores

Abstract

Compared to traditional Sanger’s DNA sequencing methods or currently commercialized next-generation-sequencing solutions (454, Roche, Basel; Solexa, Illumina, San Diego; SOLiD, Applied Biosystems, Foster City, CA, USA/Agencourt, Beverly, MA, USA; HelioScope, Helicos, Cambridge, MA, USA), nanopore-based DNA sequencing proposals have a number of advantages that fueled intense research efforts both in the industry and academia. If these efforts are successful, nanopore-based DNA sequencing will enable real-time single molecular DNA sequencing methods with little to no sample preparation. Nanopore sequencing has the potential to reduce the cost of sequencing of a whole human genome to less than $1,000. However, the road to conquer this technology is not without serious challenges. Two key issues in the field are to control the DNA translocation through the nanopore and to sense different DNA bases that compose the DNA molecule being sequenced. In this chapter, we present an overview of some commercial DNA sequencing technologies that will provide the context for our discussion of various nanopore DNA sequencing approaches. We will focus our discussion on the efforts to control the DNA translocation through the pore, as a step to realize the objective of nanopore-based DNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanger F, Nicklen S, Coulson, AR (1977) DNA sequencing with chain-terminating inhibitors Proc. Natl. Acad. Sci. USA 74(12): 5463–5467.

    Article  Google Scholar 

  2. Sanger F (8 December. 1980) Determination of nucleotide sequences in DNA, Nobel lecture.

    Google Scholar 

  3. Collins FS, Morgan M, Patrinos A (2003) The human genome project: lessons from large-scale biology. Science 300: 286–290.

    Article  Google Scholar 

  4. Mitra RD, Shendure J, Olejnik J, Olejnik EK, Church G.M (2003) Fluorescent in situ sequencing on polymerase colonies. Analyt. Biochem. 320: 55–65.

    Article  Google Scholar 

  5. Mitra RD, Church GM (1999) In situ localized amplification and contact replication of many individual DNA molecules, Nucleic Acids Res. 27.

    Google Scholar 

  6. Rehman FN, Audeh M, Abrams ES, Hammond PW, Kenney M, Boles TC (1999) Immobilization of acrylamide-modified oligonucleotides by co-polymerization, Nucleic Acids Res. 27: 649–655.

    Google Scholar 

  7. Vasiliskov AV, Timofeev EN, Surzhikov SA, Drobyshev AL, Shick VV, Mirzabekov AD (1999) Fabrication of microarray of gelimmobilized compounds on a chip by copolymerization, Biotechniques 27: 592–594, 596–598, 600.

    Google Scholar 

  8. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res. 11: 3–11.

    Article  Google Scholar 

  9. Shendure J, and Ji H (2008) Next-generation DNA sequencing. Nat. Biotechnol. 26: 1135–1145.

    Article  Google Scholar 

  10. Mardis ER (2008) Next-Generation DNA Sequencing Methods. Annu Rev Genomics Hum Genet 9:387–402.

    Article  Google Scholar 

  11. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93: 13770–133773.

    Article  Google Scholar 

  12. Deamer DW, Akeson M (2000) Nanopores and nucleic acids: prospects for ultrarapid sequencing Trends Biotechnol. 18: 147–51.

    Google Scholar 

  13. Akeson M et al. (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules Biophys. J. 77: 3227–33.

    Google Scholar 

  14. Li J, Gershow M, Stein D, Brandin E, Golovchenko JA (2003) DNA molecules and configurations in a solid state nanopore microscope Nature Mat. 2: 611.

    Google Scholar 

  15. Heng JB et al. (2003) The detection of DNA using a silicon nanopore IEDM Tech. Digest 767–70.

    Google Scholar 

  16. Heng JB et al. (2004) Sizing DNA Using a Nanometer-Diameter Pore Biophys. J. 87: 2905.

    Google Scholar 

  17. Chang H et al. (2004) DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels Nano Lett. 4: 1551–1558.

    Google Scholar 

  18. Storm AJ et al. (2003) Fast DNA translocation through a solid-state nanopore Nat. Mater. 2: 537–40.

    Google Scholar 

  19. Lagerqvist J, Zwolak M, Di Ventra M (2006) Fast DNA sequencing via transverse electronic transport. Nano Lett. 6: 779–782.

    Article  Google Scholar 

  20. Zhang XG et al. (2006) First-principles transversal DNA conductance deconstructed. Biophys. J. 91: L04–L06.

    Article  Google Scholar 

  21. Gracheva ME, Xiong A, Aksimentiev A, Schulten K, Timp G, Leburton JP (2006) Nanotechnology 17: 622–633.

    Article  Google Scholar 

  22. Lee JW, Meller A (2007) Perspectives in Bioanalysis, edited by K. Mitchelson (Elsevier).

    Google Scholar 

  23. Ling XS, Bready B, Pertsinidis A (2006) Hybridization-Assisted Nanopore Sequencing of Nucleic Acids, USPTO Patent Application No. 20070190542.

    Google Scholar 

  24. Gracheva ME, Aksimentiev A, Leburton JP (2006) Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor Nanotechnology 17: 3160–3165.

    Google Scholar 

  25. Sauer-Budge AF, Nyamwanda JA, Lubensky DK, Branton D (2003) Unzipping Kinetics of Double-Stranded DNA in a Nanopore Phys. Rev. Lett. 90: 238101.

    Article  Google Scholar 

  26. Mathé J, Viasnoff HVV, Rabin Y, Meller A (2004) Nanopore unzipping of individual DNA hairpin molecules Biophys. J. 87: 3205.

    Google Scholar 

  27. Mathé, J, Arinstein A, Rabin Y, Meller A (2006) Equilibrium and irreversible unzipping of DNA in a nanopore Europhys. Lett. 73: 128.

    Google Scholar 

  28. Clarke J, Wu HC, Jayasinghe L, Patel1 A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing Nature Nanotechnology 4: 265–270.

    Google Scholar 

  29. Drmanac R, Drmanac S, Labat I, Crkvenjakov R, Vicentric A, Gemmell A (1992) Sequencing by hybridization: towards an automated sequencing of one million M13 clones arrayed on membranes. Electrophoresis 13: 566–573.

    Article  Google Scholar 

  30. Southern EM (1996) DNA chips: analyzing sequence by hybridization to oligonucleotides on a large scale Trends Genet. 12(3): 110–115.

    Google Scholar 

  31. Fologea D, Uplinger J, Thomas B, McNabb DS, Li J (2005) Slowing DNA Translocation in a Solid-State Nanopore Nano Lett. 5: 1734–1737.

    Google Scholar 

  32. Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421: 423–427.

    Article  Google Scholar 

  33. Yildiz A, Tomishige M, Gennerich A, Vale RD (2007) Intramolecular Strain Coordinates Kinesin Stepping Behavior along Microtubules. Cell 134: 1030–1041.

    Article  Google Scholar 

  34. Keyser UF, Koeleman BN, van Dorp S et al. (2006) Direct force measurements on DNA in a solid-state nanopore. Nat Phys 2: 473–477.

    Article  Google Scholar 

  35. Trepagnier EH, Radenovic A, Sivak D et al. (2007) Controlling DNA capture and propagation through artificial nanopore. Nano Letts 7: 2824–2830.

    Article  Google Scholar 

  36. Dekker C (2007) Solid-state nanopore. Nat Nanotech 2: 209–215.

    Article  Google Scholar 

  37. Luan B, Aksimentiev A (2008) Electroosmotic screening of the DNA charge in a nanopore. Phys Rev E78: 021912–021915.

    Google Scholar 

  38. van Dorp S, Keyser UF, Dekker NH, Dekker C, Lemay SG (2009) Origin of the electrophoretic force on DNA in solid-state nanopores. Nat Phys 5: 347–351.

    Article  Google Scholar 

  39. Luan B, Aksimentiev A (2010) Control and reversal of the Electrophoretic force on DNA in a charged nanopore. J Phys Condens Matter 22: 44123.

    Google Scholar 

  40. Liu H, He J, Tang J et al. (2010) Translocation of Single-Stranded DNA Through Single-Walled Carbon Nanotubes. Science 327: 64–67.

    Article  Google Scholar 

  41. Peng HB, Ling XS (2009) Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20: 185101.

    Article  Google Scholar 

  42. Fan R, Karnik R, Yue M, Li D, Majumdar A, Yang P (2005) DNA Translocation in Inorganic Nanotubes Nano Lett. 5: 1633–1637.

    Google Scholar 

  43. Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores Nano Lett. 6: 89–95.

    Google Scholar 

  44. Chang H, Venkatesan BM, Iqbal SM, Andreadakis G, Kosari F, Vasmatzis G, Peroulis D, Bashir R (2006) DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor Biomed Microdevices 8: 263–269.

    Google Scholar 

  45. Polonsky S, Rossnagel S and Stolovitzky G (2007) Nanopore in metal-dielectric sandwich for DNA position control Appl. Phys. Lett. 91: 153103.

    Google Scholar 

  46. Luan B, Peng H, Polonsky S, Rossnagel S, Stolovitzky G, Martyna G (2010) Base-By-Base Ratcheting of Single Stranded DNA through a Solid-State Nanopore Phys. Rev. Lett. 104: 238103.

    Article  Google Scholar 

  47. John Eid et al. (2009) Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323: 133.

    Google Scholar 

  48. Radoje Drmanac et al. (2010) Human Genome Sequencing Using Unchained Base Reads on Self-Assembling DNA Nanoarrays. Science 327: 78.

    Google Scholar 

  49. Service RF (2006) Science. 311: 1544–1546.

    Article  Google Scholar 

  50. Fred Sanger (2001) The early days of DNA sequences, Nature Medicine 7: 267.

    Google Scholar 

  51. Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M (2007) What is a gene, post-ENCODE? History and updated definition, Genome Res. 17: 669.

    Article  Google Scholar 

  52. http://www.personalgenomes.org/

Download references

Acknowledgments

The authors acknowledge useful discussions with members of the IBM DNA-transistor team: Ali Afzali, Arjang Hassibi, George Walker, Glenn Martyna, Philip Waggoner, Stanislav Polonsky, Stefan Harrer and Stephen Rossnagel. This work was supported in part by a grant from the National Institutes of Health (R01-HG05110-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Peng, H., Luan, B., Stolovitzky, G. (2011). Nanopore-Based DNA Sequencing and DNA Motion Control. In: Iqbal, S., Bashir, R. (eds) Nanopores. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8252-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8252-0_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8251-3

  • Online ISBN: 978-1-4419-8252-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics