Skip to main content
Book cover

Nanopores pp 227–254Cite as

Capture and Translocation of Nucleic Acids into Sub-5 nm Solid-State Nanopores

  • Chapter
  • First Online:
  • 1164 Accesses

Abstract

Nanopores have emerged as single-molecule analytic tools for fundamental biophysical characterization of nucleic acids as well as for future genomic applications. The enormous interest in single-molecule analysis has spurred the development of many different approaches to nanopore fabrication. Of these, ultrathin solid-state membranes are the most promising substrates, combining exceptional robustness and control over pore size and shape with an inherently planar geometry that enables parallel detection with nanopore arrays. Moreover, nanopores with diameters in the range of 1–5 nm represent an important size regime for studying nucleic acids, as these pores can translocate long DNA and RNA molecules in a linear fashion, enabling readout of local nucleic acid structure with unparalleled read-length. In this review, we focus on two fundamental aspects of nucleic acid analysis using nanopores, namely the process of DNA capture and the subsequent translocation dynamics. We compile here a multi-parametric study of double-stranded DNA molecules of lengths ranging from 50 to 50,000 bp, and discuss the influence of DNA length, applied voltage, temperature, and salt buffer concentrations on the capture and translocation processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77(6):3227–3233

    Article  Google Scholar 

  2. Aksimentiev A, Heng ZB, Timp G, Schulten K (2004) Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys J 87:2086–2097

    Article  Google Scholar 

  3. Bates M, Burns M, Meller A (2003) Dynamics of DNA molecules in a membrane channel probed by active control techniques. Biophys J 84(4):2366–2372

    Article  Google Scholar 

  4. Benner S, et al. (2007) Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat Nanotechnol 2(11):718–724

    Article  MathSciNet  Google Scholar 

  5. Branton D, et al. (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  Google Scholar 

  6. Butler TZ, Gundlach JH, Troll MA (2006) Determination of RNA orientation during translocation through a biological nanopore. Biophys J 90(1):190–199

    Article  Google Scholar 

  7. Chen P, et al. (2004) Probing single DNA molecule transport using fabricated nanopores. Nano Lett 4(11):2293–2298

    Article  Google Scholar 

  8. Chen P, Li CM (2007) Nanopore unstacking of single-stranded DNA helices. Small 3(7):1204–1208

    Article  Google Scholar 

  9. Clarke J, et al. (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270

    Article  Google Scholar 

  10. Coulter WH. 1953: US 2,656,508.

    Google Scholar 

  11. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2(4):209–215

    Article  MathSciNet  Google Scholar 

  12. Fologea D, Uplinger J, Thomas B, McNabb DS, Li J (2005) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5:1734–1737

    Article  Google Scholar 

  13. Fologea D, Brandin E, Uplinger J, Branton D, Li J (2007) DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis 28(18):3186–3192

    Article  Google Scholar 

  14. Fologea D, Ledden B, McNabb DS, Li JL (2007) Electrical characterization of protein molecules by a solid-state nanopore. App Phys Lett 91(5)

    Google Scholar 

  15. Healy K (2007) Nanopore-based single-molecule DNA analysis. Nanomed 2(4):459–481

    Article  Google Scholar 

  16. Heng ZB, et al. (2004) Sizing DNA using a nanometer-diameter pore. Biophys J 87:2905–2911

    Article  Google Scholar 

  17. Henrickson SE, Misakian M, Robertson B, Kasianowicz JJ (2000) Driven DNA transport into an asymmetric nanometer scale pore. Phys Rev Lett 85:3

    Article  Google Scholar 

  18. Hornblower B, et al. (2007) Single-molecule analysis of DNA-protein complexes using nanopores. Nat Methods 4(4):315–317

    Google Scholar 

  19. Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2(4):243–248

    Article  Google Scholar 

  20. Jayawardhana D, Crank J, Zhao Q, Armstrong D, Guan X (2009) Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte. Anal Chem 81(1):460–464

    Article  Google Scholar 

  21. Kang X, Cheley S, Guan X, Bayley H (2006) Stochastic detection of enantiomers. J Am Chem Soc 128(33):10684–10685

    Article  Google Scholar 

  22. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93(24): 13770–13773

    Article  Google Scholar 

  23. Kim MJ, Wanunu M, Bell DC, Meller A (2006) Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv Mater 18(23):3149–3153

    Article  Google Scholar 

  24. Kowalczyk S, Hall A, Dekker C (2010) Detection of local protein structures along DNA using solid-state nanopores. Nano Lett 10(1):324–428

    Article  Google Scholar 

  25. Li J, et al. (2001) Ion-beam sculpting at nanometre length scales. Nature 412(6843):166–169

    Article  Google Scholar 

  26. Li JL, Gershow M, Stein D, Brandin E, Golovchenko JA (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2(9):611–615

    Article  Google Scholar 

  27. Long D, Viovy J-L, Ajdari A (1996) Simultaneous action of electric fields and nonelectric forces on a polyelectrolyte: motion and deformation. Phys Rev Lett 76:3858–3861

    Article  Google Scholar 

  28. Luan B, Aksimentiev A (2008) Electro-osmotic screening of the DNA charge in a nanopore. Phys Rev E 78(2):021912

    Article  Google Scholar 

  29. Lubensky DK, Nelson DR (1999) Driven polymer translocation through a narrow pore. Biophys J 77:1824–1838

    Article  Google Scholar 

  30. Luo K, Ala-Nissila T, Ying S-C, Bhattacharya A (2007) Influence of polymer-pore interactions on translocation. Phys Rev Lett 99(14)

    Google Scholar 

  31. Mathe J, Aksimentiev A, Nelson DR, Schulten K, Meller A (2005) Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc Natl Acad Sci USA 102(35):12377–12382

    Article  Google Scholar 

  32. Mathe J, Arinstein A, Rabin Y, Meller A (2006) Equilibrium and irreversible unzipping of DNA in a nanopore. Europhys Lett 73(1):128–134

    Article  Google Scholar 

  33. McNally B, Wanunu M, Meller A (2008) Electro-mechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores. Nano Lett 8(10):3418–3422

    Article  Google Scholar 

  34. Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci USA 97(3):1079–1084

    Article  Google Scholar 

  35. Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore. Phys Rev Lett 86:3435–3438

    Article  Google Scholar 

  36. Meller A, Branton D (2002) Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23(16):2583–2591

    Article  Google Scholar 

  37. Meller A (2003) Dynamics of polynucleotide transport through nanometre-scale pores. J Phys Condens Matter 15:R581–R607

    Article  Google Scholar 

  38. Nkodo AE, et al. (2001) Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis 22:2424–2432

    Google Scholar 

  39. Olivera BM, Baine P, Davidson N (1964) Electrophoresis of the nucleic acids. Biopolymers 2:245–257

    Article  Google Scholar 

  40. Sauer-Budge AF, Nyamwanda JA, Lubensky DK, Branton D (2003) Unzipping kinetics of double-stranded DNA in a nanopore. Phys Rev Lett 90(23)

    Google Scholar 

  41. Singer A, et al. (2010) Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett 10:738–742

    Article  Google Scholar 

  42. Soni GV, Meller A (2007) Progress toward ultrafast DNA Sequencing using solid-state nanopores. Clin Chem 53(11):1996–2001

    Article  Google Scholar 

  43. Soni GV, et al. (2010) Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. Rev Sci Instrum 81(1):014301–014307

    Article  Google Scholar 

  44. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mat 2(8):537–540

    Article  Google Scholar 

  45. Storm AJ, et al. (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5(7):1193–1197

    Article  Google Scholar 

  46. Vercoutere W, et al. (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotechnol 19(3):248–252

    Article  Google Scholar 

  47. Wanunu M, Meller A (2007) Chemically modified solid-state nanopores. Nano Lett 7(6):1580–1585

    Article  Google Scholar 

  48. Wanunu M, Meller A (2008) Single-molecule analysis of nucleic acids and DNA-protein interactions using nanopores. In: Selvin P, Ha TJ (eds) Single-Molecule Techniques: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York

    Google Scholar 

  49. Wanunu M, Sutin J, McNally B, Chow A, Meller A (2008) DNA translocation governed by interactions with solid state nanopores. Biophys J 95(10):4716–4725

    Article  Google Scholar 

  50. Wanunu M, Morrison W, Rabin Y, Grosberg A, Meller A (2010) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 5:160–165

    Article  Google Scholar 

  51. Wanunu M, Sutin J, Meller A (2009) DNA profiling using solid-state nanopores: detection of DNA-binding molecules. Nano Lett 9:3498–3502

    Article  Google Scholar 

  52. Zhang J, Shklovskii BI (2007) Effective charge and free energy of DNA inside an ion channel. Phys Rev E 75:021906

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge stimulating discussions contributing to this chapter with B. McNally, A. Singer, Y. Rabin, A. Grosberg, D. Nelson, A. Kolomeisky and W. Morrison. A.M. acknowledges support from NIH award HG-004128, and NSF award PHY-0646637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Meller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wanunu, M., Squires, A., Meller, A. (2011). Capture and Translocation of Nucleic Acids into Sub-5 nm Solid-State Nanopores. In: Iqbal, S., Bashir, R. (eds) Nanopores. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8252-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8252-0_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8251-3

  • Online ISBN: 978-1-4419-8252-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics