Advertisement

Nanopores pp 1-33 | Cite as

Solid-State Nanopore Sensors for Nucleic Acid Analysis

Chapter

Abstract

Solid-state nanopores are nm sized apertures formed in thin synthetic membranes. These single molecule sensors have been used in a variety of biophysical and diagnostic applications and serve as a potential candidate in the development of cost-effective, next generation DNA sequencing technologies, critical to furthering our understanding of inheritance, individuality, disease and evolution. The versatility of solid-state nanopore technology allows for both interfacing with biological systems at the nano-scale as well as large scale VLSI integration promising reliable, affordable, mass producible biosensors with single molecule sensing capabilities. In addition, this technology allows for truly parallel, high throughput DNA and protein analysis through the development of nanopore and micropore arrays in ultra-thin synthetic membranes. This chapter is focused on the development of solid-state nanopore sensors in synthetic membranes and the potential benefits and challenges associated with this technology. Biological nanopores, primarily α-hemolysin and the phi29 connector are also reviewed. We conclude with a detailed discussion on chemically modified solid-state nanopores. These surface functionalized nanopore sensors combine the stability and versatility of solid-state nanopores with the sensitivity and selectivity of biological nanopore systems and may play an important role in drug screening and medical diagnostics.

Keywords

α-hemolysin phi29 Nanopores in Al2O3 Membranes Surface Charges in Nanopores Surface Enhanced DNA Transport 

Notes

Acknowledgments

We thank the staff at Micro and Nanotechnology Lab and Frederick Seitz Materials Research Lab, University of Illinois at Urbana-Champaign for their assistance. We acknowledge the funding from the National Institutes of Health through the NIH Roadmap for Medical Research Nanomedicine Development Center (PN2 EY 018230) and NIH R21 EB007472.

References

  1. 1.
    Alami-Younssi, S., Larbot, A., Persin, M., Sarrazin, J., & Cot, L. (1995). Rejection of mineral salts on a gamma alumina nanofiltration membrane Application to environmental process. Journal of Membrane Science, 102, 123–129.CrossRefGoogle Scholar
  2. 2.
    Benner, Seico, Chen, Roger J. A., Wilson, Noah A., Abu-Shumays, Robin, Hurt, Nicholas, Lieberman, Kate R., et al. (2007). Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat Nano, 2(11), 718–724.CrossRefGoogle Scholar
  3. 3.
    Berger, S. D., Salisbury, I. G., Milne, R. H., Imeson, D., & Humphreys, C. J. (1987). Electron energy-loss spectroscopy studies of nanometre-scale structures in alumina produced by intense electron-beam irradiation. Philosophical Magazine Part B, 55(3), 341–358.CrossRefGoogle Scholar
  4. 4.
    Bhakdi, S., & Tranum-Jensen, J. (1991). Alpha-toxin of Staphylococcus aureus. Microbiol. Mol. Biol. Rev., 55(4), 733–751.Google Scholar
  5. 5.
    Bouchet, Danièle, & Colliex, Christian (2003). Experimental study of ELNES at grain boundaries in alumina: intergranular radiation damage effects on Al-L23 and O-K edges. Ultramicroscopy, 96(2), 139–152.CrossRefGoogle Scholar
  6. 6.
    Bourdillon, A. J., El-mashri, S. M., & Forty, A. J. (1984). Application of TEM extended electron energy loss fine structure to the study of aluminium oxide films. Philosophical Magazine A, 49(3), 341–352.CrossRefGoogle Scholar
  7. 7.
    Bowen, Paul, Carry, Claude, Luxembourg, David, & Hofmann, Heinrich (2005). Colloidal processing and sintering of nanosized transition aluminas. Powder Technology, 157(1–3), 100–107.CrossRefGoogle Scholar
  8. 8.
    Brun, L., Pastoriza-Gallego, M., Oukhaled, G., Mathe, J., Bacri, L., Auvray, L., et al. (2008). Dynamics of polyelectrolyte transport through a protein channel as a function of applied voltage. Physical Review Letters, 100(15).Google Scholar
  9. 9.
    Cantor, C. R., & Schimmel, P. R. (1980). Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function. New York: W.H. Freeman.Google Scholar
  10. 10.
    Chad Harrell, C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape13. Small, 2(2), 194–198.CrossRefGoogle Scholar
  11. 11.
    Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., & Bashir, R. (2004). DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551–1556.CrossRefGoogle Scholar
  12. 12.
    Chang, H., Venkatesan, B. M., Iqbal, S., Andreadakis, G., Kosari, F., Vasmatzis, G., et al. (2006). DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor. Biomedical Microdevices, 8(3), 263–269.CrossRefGoogle Scholar
  13. 13.
    Chen, G. S., Boothroyd, C. B., & Humphreys, C. J. (1998). Electron-beam-induced damage in amorphous SiO2 and the direct fabrication of silicon nanostructures. Philosophical Magazine A, 78, 491–506.CrossRefGoogle Scholar
  14. 14.
    Chen, P., Gu, J., Brandin, E., Kim, Y. R., Wang, Q., & Branton, D. (2004). Probing Single DNA Molecule Transport Using Fabricated Nanopores. Nano Letters, 4(11), 2293–2298.CrossRefGoogle Scholar
  15. 15.
    Chen, P., Mitsui, T., Farmer, D.B., Golovchenko, J., Gordon, R.G., & Branton, D. (2004). Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. Nano Lett., 4(7), 1333–1337.CrossRefGoogle Scholar
  16. 16.
    Chen, Peng, & Gillis, Kevin D. (2000). The Noise of Membrane Capacitance Measurements in the Whole-Cell Recording Configuration. Biophysical Journal, 79(4), 2162–2170.CrossRefGoogle Scholar
  17. 17.
    Chun, Kyoung-Yong, & Stroeve, Pieter (2002). Protein Transport in Nanoporous Membranes Modified with Self-Assembled Monolayers of Functionalized Thiols. Langmuir, 18(12), 4653–4658.CrossRefGoogle Scholar
  18. 18.
    Clarke, J., Wu, H. C., Jayasinghe, L., Patel, A., Reid, S., & Bayley, H. (2009). Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 4(4), 265–270.CrossRefGoogle Scholar
  19. 19.
    Cockroft, Scott L., Chu, John, Amorin, Manuel, & Ghadiri, M. Reza (2008). A Single-Molecule Nanopore Device Detects DNA Polymerase Activity with Single-Nucleotide Resolution. Journal of the American Chemical Society, 130(3), 818–820.CrossRefGoogle Scholar
  20. 20.
    Comer, J., Dimitrov, V., Zhao, Q., Timp, G., & Aksimentiev, A. (2009). Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. Biophys J, 96(2), 593–608.CrossRefGoogle Scholar
  21. 21.
    Coulter, W. H. (1953). Means for counting particles suspended in a fluid, United States Patent 2656508.Google Scholar
  22. 22.
    Dekker, Cees (2007). Solid-state nanopores. Nat Nano, 2(4), 209–215.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Dimitrov, V., Mirsaidov, U., Mansfield, W., Miner, J., Klemens, F., Cirelli, R., et al. (2009). Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology, 21(6), 065502.CrossRefGoogle Scholar
  24. 24.
    Egerton, R. F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope (Second Edition ed.). New York: Plenum Press.Google Scholar
  25. 25.
    Fitch, J. T., Bjorkman, C. H., Lucovsky, G., Pollak, F. H., & Yin, X. (1989). Intrinsic stress and stress gradients at the SiO 2 /Si interface in structures prepared by thermal oxidation of Si and subjected to rapid thermal annealing. Paper presented at the Proceedings of the 16th annual conference on the physics and chemistry of semiconductor interfaces, Bozeman, Montana, USA.Google Scholar
  26. 26.
    Fologea, Daniel, Uplinger, James, Thomas, Brian, McNabb, David S., & Li, Jiali (2005). Slowing DNA Translocation in a Solid-State Nanopore. Nano Letters, 5(9), 1734–1737.CrossRefGoogle Scholar
  27. 27.
    Franks, George V., & Meagher, Laurence (2003). The isoelectric points of sapphire crystals and alpha-alumina powder. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1–3), 99–110.CrossRefGoogle Scholar
  28. 28.
    Gyurcsányi, R. E. (2008). Chemically-modified nanopores for sensing. TrAC Trends in Analytical Chemistry, 27(7), 627–639.CrossRefGoogle Scholar
  29. 29.
    Heng, J. B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y. V., Sligar, S., et al. (2006). The electromechanics of DNA in a synthetic nanopore. Biophysical Journal, 90(3), 1098–1106.CrossRefGoogle Scholar
  30. 30.
    Heng, J. B., Ho, C., Kim, T., Timp, R., Aksimentiev, A., Grinkova, Y. V., et al. (2004). Sizing DNA Using a Nanometer-Diameter Pore. Biophys. J., 87(4), 2905–2911.CrossRefGoogle Scholar
  31. 31.
    Heng, J. B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y.V., Sligar, S., et al. (2005). Stretching DNA Using the Electric Field in a Synthetic Nanopore. Nano Lett., 5(10), 1883–1888.CrossRefGoogle Scholar
  32. 32.
    Henrickson, Sarah E., Misakian, Martin, Robertson, Baldwin, & Kasianowicz, John J. (2000). Driven DNA Transport into an Asymmetric Nanometer-Scale Pore. Physical Review Letters, 85(14), 3057.CrossRefGoogle Scholar
  33. 33.
    Ho, Chuen, Qiao, Rui, Heng, Jiunn B., Chatterjee, Aveek, Timp, Rolf J., Aluru, Narayana R., et al. (2005). Electrolytic transport through a synthetic nanometer-diameter pore. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10445–10450.CrossRefGoogle Scholar
  34. 34.
    Höfler, Lajos, & Gyurcsányi, Róbert E. (2008). Coarse Grained Molecular Dynamics Simulation of Electromechanically-Gated DNA Modified Conical Nanopores. Electroanalysis, 20(3), 301–307.CrossRefGoogle Scholar
  35. 35.
    Hoogerheide, D. P., Garaj, S., & Golovchenko, J. A. (2009). Probing Surface Charge Fluctuations with Solid-State Nanopores. Physical Review Letters, 102(25).Google Scholar
  36. 36.
    Iqbal, Samir M., Akin, Demir, & Bashir, Rashid (2007). Solid-state nanopore channels with DNA selectivity. Nat Nano, 2(4), 243–248.CrossRefGoogle Scholar
  37. 37.
    Jagerszki, Gyula, Gyurcsanyi, Robert E., Hofler, Lajos, & Pretsch, Erno (2007). Hybridization-Modulated Ion Fluxes through Peptide-Nucleic-Acid- Functionalized Gold Nanotubes. A New Approach to Quantitative Label-Free DNA Analysis. Nano Letters, 7(6), 1609–1612.Google Scholar
  38. 38.
    Jirage, Kshama B., Hulteen, John C., & Martin, Charles R. (1997). Nanotubule-Based Molecular-Filtration Membranes. Science, 278(5338), 655–658.CrossRefGoogle Scholar
  39. 39.
    Jirage, Kshama B., Hulteen, John C., & Martin, Charles R. (1999). Effect of Thiol Chemisorption on the Transport Properties of Gold Nanotubule Membranes. Analytical Chemistry, 71(21), 4913–4918.CrossRefGoogle Scholar
  40. 40.
    Jonas, D., Walev, I., Berger, T., Liebetrau, M., Palmer, M., & Bhakdi, S. (1994). Novel path to apoptosis: small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect. Immun., 62(4), 1304–1312.Google Scholar
  41. 41.
    Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A. S., Zilman, A., Peters, R., Rout, M. P., et al. (2009). Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature, 457(7232), 1023–1027.CrossRefGoogle Scholar
  42. 42.
    Kalman, Eric B., Sudre, Olivier, & Siwy, Zuzanna S. (2009). Control of Ionic Transport through an Ionic Transistor based on Gated Single Conical Nanopores. Biophysical Journal, 96(3, Supplement 1), 648a-648a.Google Scholar
  43. 43.
    Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA, 93(24), 13770.Google Scholar
  44. 44.
    Kejian, Ding, Weimin, Sun, Haiyan, Zhang, Xianglei, Peng, & Honggang, Hu (2009). Dependence of zeta potential on polyelectrolyte moving through a solid-state nanopore. Applied Physics Letters, 94(1), 014101–014103.CrossRefGoogle Scholar
  45. 45.
    Keshner, M. S. (1982). 1/f noise. Proceedings of the IEEE, 70(3), 212–218.CrossRefGoogle Scholar
  46. 46.
    Kim, M. J., McNally, B., Murata, K., & Meller, A. (2007). Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 20, 205302CrossRefGoogle Scholar
  47. 47.
    Kim, M. J., Wanunu, M., Bell, D. C., & A. Meller (2006). Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis. Advanced Materials, 18(23), 3149–3153.CrossRefGoogle Scholar
  48. 48.
    Kim, Y. R., Min, J., Lee, I. H., Kim, S., Kim, A. G., Kim, K., et al. (2007). Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosensors and Bioelectronics, 22(12), 2926–2931.CrossRefGoogle Scholar
  49. 49.
    Kohli, Punit, Harrell, C. Chad, Cao, Zehui, Gasparac, Rahela, Tan, Weihong, & Martin, Charles R. (2004). DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. Science, 305(5686), 984–986.CrossRefGoogle Scholar
  50. 50.
    Lagerqvist, Johan, Zwolak, Michael, & Di Ventra, Massimiliano (2006). Fast DNA Sequencing via Transverse Electronic Transport. Nano Letters, 6(4), 779–782.Google Scholar
  51. 51.
    Lee, Sang Bok, Mitchell, David T., Trofin, Lacramioara, Nevanen, Tarja K., Soderlund, Hans, & Martin, Charles R. (2002). Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations. Science, 296(5576), 2198–2200.CrossRefGoogle Scholar
  52. 52.
    Li, Jiali, Gershow, Marc, Stein, Derek, Brandin, Eric, & Golovchenko, J. A. (2003). DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater, 2(9), 611–615.CrossRefGoogle Scholar
  53. 53.
    Li, Jiali, Stein, Derek, McMullan, Ciaran, Branton, Daniel, Aziz, Michael J., & Golovchenko, Jene A. (2001). Ion-beam sculpting at nanometre length scales. Nature, 412(6843), 166–169.CrossRefGoogle Scholar
  54. 54.
    Lo, Chih Jen, Aref, Thomas, & Bezryadin, Alexey (2006). Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology, 17(13), 3264–3267.CrossRefGoogle Scholar
  55. 55.
    Love, J. Christopher, Estroff, Lara A., Kriebel, Jennah K., Nuzzo, Ralph G., & Whitesides, George M. (2005). Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 105(4), 1103–1170.CrossRefGoogle Scholar
  56. 56.
    Lubensky, D. K., & Nelson, D. R. (1999). Driven Polymer Translocation Through a Narrow Pore. Biophysical Journal, 77(4), 1824–1838.Google Scholar
  57. 57.
    Manning, G. S. (1993). A Condensed Counterion Theory for Polarization of Polyelectrolyte Solutions in High Fields. Journal of Chemical Physics, 99(1), 477–486.CrossRefGoogle Scholar
  58. 58.
    Mathe, Jerome, Aksimentiev, Aleksei, Nelson, David R., Schulten, Klaus, & Meller, Amit (2005). Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12377–12382.CrossRefGoogle Scholar
  59. 59.
    McNally, Ben, Wanunu, Meni, & Meller, Amit (2008). Electromechanical Unzipping of Individual DNA Molecules Using Synthetic Sub-2 nm Pores. Nano Lett. Google Scholar
  60. 60.
    Meller, A., & Branton, D. (2002). Single molecule measurements of DNA transport through a nanopore. Electrophoresis, 23(16), 2583–2591.CrossRefGoogle Scholar
  61. 61.
    Meller, A., Nivon, L., & Branton, D. (2001). Voltage-Driven DNA Translocations through a Nanopore. Physical Review Letters, 86(15), 3435.CrossRefGoogle Scholar
  62. 62.
    Mitchell, Nick, & Howorka, Stefan (2008). Chemical Tags Facilitate the Sensing of Individual DNA Strands with Nanopores13. Angewandte Chemie International Edition, 47(30), 5565–5568.CrossRefGoogle Scholar
  63. 63.
    Moon, Jeong-Mi, Akin, Demir, Xuan, Yi, Ye, Peide, Guo, Peixuan, & Bashir, Rashid (2009). Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes. Biomedical Microdevices, 11(1), 135–142.Google Scholar
  64. 64.
    Nakane, J., Akeson, M., & Marziali, A. (2002). Evaluation of nanopores as candidates for electronic analyte detection. Electrophoresis, 23(16), 2592–2601.CrossRefGoogle Scholar
  65. 65.
    Nam, Sung-Wook, Rooks, Michael J., Kim, Ki-Bum, & Rossnagel, Stephen M. (2009). Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores. Nano Letters, 9(5), 2044–2048.CrossRefGoogle Scholar
  66. 66.
    Nilsson, J., Lee, J. R. I., Ratto, T. V., & Létant, S. E. (2006). Localized Functionalization of Single Nanopores. Advanced Materials, 18(4), 427–431.CrossRefGoogle Scholar
  67. 67.
    O'Keeffe, M., & Stuart, J. A. (2002). Bond energies in solid oxides. Inorganic Chemistry, 22(1), 177–179.CrossRefGoogle Scholar
  68. 68.
    Parks, George A. (2002). The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chemical Reviews, 65(2), 177–198.CrossRefGoogle Scholar
  69. 69.
    Peters, Reiner (2005). Translocation Through the Nuclear Pore Complex: Selectivity and Speed by Reduction-of-Dimensionality. Traffic, 6(5), 421–427.CrossRefGoogle Scholar
  70. 70.
    Petrossian, L., Wilk, S. J., Joshi, P., Hihath, S., Goodnick, S. M., & Thornton, T. J. (2007). Fabrication of Cylindrical Nanopores and Nanopore Arrays in Silicon-On-Insulator Substrates. Journal of Microelectromechanical Systems, 16(6), 1419–1428.CrossRefGoogle Scholar
  71. 71.
    Pivin, Jean Claude (1983). An overview of ion sputtering physics and practical implications. Journal of Materials Science, 18(5), 1267–1290.CrossRefGoogle Scholar
  72. 72.
    Salisbury, I. G., Timsit, R. S., Berger, S. D., & Humphreys, C. J. (1984). Nanometer scale electron beam lithography in inorganic materials. Applied Physics Letters, 45(12), 1289–1291.CrossRefGoogle Scholar
  73. 73.
    Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463–5467.CrossRefGoogle Scholar
  74. 74.
    Schenkel, T., Radmilovic, V., Stach, E. A., Park, S. J., & Persaud, A. (2003). Formation of a few nanometer wide holes in membranes with a dual beam focused ion beam system. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(6), 2720–2723.CrossRefGoogle Scholar
  75. 75.
    Siwy, Z., Dobrev, D., Neumann, R., Trautmann, C., & Voss, K. (2003). Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Applied Physics A: Materials Science & Processing, 76(5), 781–785.CrossRefGoogle Scholar
  76. 76.
    Siwy, Z., & Fulinski, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567–574.CrossRefGoogle Scholar
  77. 77.
    Siwy, Z., Heins, E., Harrell, C. Chad, Kohli, P., & Martin, C.R. (2004). Conical-Nanotube Ion-Current Rectifiers: The Role of Surface Charge. Journal of the American Chemical Society, 126(35), 10850–10851.CrossRefGoogle Scholar
  78. 78.
    Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735–746.CrossRefGoogle Scholar
  79. 79.
    Smeets, R. M. M., Dekker, N. H., & Dekker, C. (2009). Low-frequency noise in solid-state nanopores. Nanotechnology, 20(9), 095501.Google Scholar
  80. 80.
    Smeets, R. M. M., Keyser, U. F., Dekker, N. H., & Dekker, C. (2008). Noise in solid-state nanopores. Proceedings of the National Academy of Sciences, 105(2), 417–421.CrossRefGoogle Scholar
  81. 81.
    Smeets, R. M. M., Keyser, U. F., Krapf, D., Wu, M. Y., Dekker, N. H., & Dekker, C. (2006). Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores. Nano Lett., 6(1), 89–95.CrossRefGoogle Scholar
  82. 82.
    Smeets, R. M. M., Kowalczyk, S. W., Hall, A. R., Dekker, N. H., & Dekker, C. (2008). Translocation of RecA-Coated Double-Stranded DNA through Solid-State Nanopores. Nano Letters.Google Scholar
  83. 83.
    Stoddart, David, Heron, Andrew J., Mikhailova, Ellina, Maglia, Giovanni, & Bayley, Hagan (2009). Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proceedings of the National Academy of Sciences, 106(19), 7702–7707.CrossRefGoogle Scholar
  84. 84.
    Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., & Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater, 2(8), 537–540.CrossRefGoogle Scholar
  85. 85.
    Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F., & Dekker, C. (2005). Fast DNA Translocation through a Solid-State Nanopore. Nano Lett., 5(7), 1193–1197.CrossRefGoogle Scholar
  86. 86.
    Tabard-Cossa, Vincent, Trivedi, Dhruti, Wiggin, Matthew, Jetha, Nahid N., & Marziali, Andre (2007). Noise analysis and reduction in solid-state nanopores. Nanotechnology, 18(30), 305505.CrossRefGoogle Scholar
  87. 87.
    Uram, Jeffrey D., Ke, Kevin, & Mayer, Michael (2008). Noise and Bandwidth of Current Recordings from Submicrometer Pores and Nanopores. ACS Nano, 2(5), 857–872.CrossRefGoogle Scholar
  88. 88.
    Veeramasuneni, S., Yalamanchili, M. R., & Miller, J. D. (1996). Measurement of Interaction Forces between Silica and [alpha]-Alumina by Atomic Force Microscopy. Journal of Colloid and Interface Science, 184(2), 594–600.CrossRefGoogle Scholar
  89. 89.
    Venkatesan, B. M., Dorvel, B., Yemenicioglu, S., Watkins, N., Petrov, I., & Bashir, R. (2009). Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis. Advanced Materials, 21(27), 2771–2776.CrossRefGoogle Scholar
  90. 90.
    Venkatesan, B. M., Shah, A. B., Zuo, J. M., & Bashir, R. (2010). DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors. Advanced Functional Materials, 20(8), 1266–1275.CrossRefGoogle Scholar
  91. 91.
    Venkatesan, B. M., Polans, J., Comer, J., Sridhar, S., Wendell, D., Aksimentiev, A., & Bashir, R. (2011). Lipid Bilayer Coated Al2O3 Nanopore Sensors: Towards a Hybrid Biological Solid-State Nanopore. Biomedical Microdevices, DOI: 10.1007/s10544-011-9537-3.CrossRefGoogle Scholar
  92. 92.
    Vercoutere, Wenonah, Winters-Hilt, Stephen, Olsen, Hugh, Deamer, David, Haussler, David, & Akeson, Mark (2001). Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotech, 19(3), 248–252.CrossRefGoogle Scholar
  93. 93.
    Wanunu, Meni, & Meller, Amit (2007). Chemically Modified Solid-State Nanopores. Nano Letters, 7(6), 1580–1585.CrossRefGoogle Scholar
  94. 94.
    Wanunu, Meni, Sutin, Jason, McNally, Ben, Chow, Andrew, & Meller, Amit (2008). DNA Translocation Governed by Interactions with Solid State Nanopores. Biophys. J., biophysj.108.140475.Google Scholar
  95. 95.
    Wendell, David, Jing, Peng, Geng, Jia, Subramaniam, Varuni, Lee, Tae Jin, Montemagno, Carlo, et al. (2009). Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat Nano, 4(11), 765–772.CrossRefGoogle Scholar
  96. 96.
    Winters-Hilt, Stephen (2007). The alpha-Hemolysin nanopore transduction detector - single-molecule binding studies and immunological screening of antibodies and aptamers. BMC Bioinformatics, 8(Suppl 7), S9.CrossRefGoogle Scholar
  97. 97.
    Wu, M. Y., Krapf, D., Zandbergen, M., Zandbergen, H. W., & Batson, P. E. (2005). Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Applied Physics Letters, 87(11), 113106–113103.CrossRefGoogle Scholar
  98. 98.
    Wu, M. Y., Smeets, R. M. M., Zandbergen, M., Ziese, U., Krapf, D., Batson, P. E., et al. (2009). Control of Shape and Material Composition of Solid-State Nanopores. Nano Letters, 9(1), 479–484.CrossRefGoogle Scholar
  99. 99.
    Wu, Shanshan, Park, Sang Ryul, & Ling, Xinsheng Sean (2006). Lithography-Free Formation of Nanopores in Plastic Membranes Using Laser Heating. Nano Letters, 6(11), 2571–2576.CrossRefGoogle Scholar
  100. 100.
    Xiang, Ye, Morais, Marc C., Battisti, Anthony J., Grimes, Shelley, Jardine, Paul J., Anderson, Dwight L., et al. (2006). Structural changes of bacteriophage [phi]29 upon DNA packaging and release. EMBO J, 25(21), 5229–5239.CrossRefGoogle Scholar
  101. 101.
    Yu, Minrui, Kim, Hyun-Seok, & Blick, Robert H. (2009). Laser drilling of nano-pores in sandwiched thin glass membranes. Opt. Express, 17(12), 10044–10049.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering, Micro and Nanotechnology LabUniversity of Illinois at Urbana-ChampaignChampaignUSA
  2. 2.Department of Electrical and Computer Engineering, Department of Bioengineering, Micro and Nanotechnology LabUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations