Skip to main content

Optimal SERS Nanostructures

  • Chapter
  • First Online:
  • 856 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

McMahon JM, Henry A-I, Wustholz KL, Natan MJ, Freeman RG, Van Duyne RP, Schatz GC (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394:1819–1825. DOI: 10.1007/s00216-009-2738-4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McMahon JM, Henry A-I, Wustholz KL, Natan MJ, Freeman RG, Van Duyne RP, Schatz GC (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394:1819–1825

    Article  CAS  Google Scholar 

  2. Wustholz KL, Henry A-I, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) Structure-activity relationships in gold nanoparticle dimers and timers for surface-enhanced raman spectroscopy. J Am Chem Soc 132:10903–10910

    Article  CAS  Google Scholar 

  3. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932

    Article  CAS  Google Scholar 

  4. Xu H (2004) Theoretical study of coated spherical metallic nanoparticles for single-molecule surface enhanced spectroscopy. Appl Phys Lett 85:5980–5982

    Article  CAS  Google Scholar 

  5. Kottmann JP, Martin OJF (2001) Plasmon resonant coupling in metallic nanowires. Opt Express 8:655–663

    Article  CAS  Google Scholar 

  6. Aravind PK, Nitzan A, Metiu H (1981) The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. Surf Sci 110:189–204

    Article  CAS  Google Scholar 

  7. Vanin AI (1995) Surface-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles. J Appl Spect 62:32–36

    Article  Google Scholar 

  8. Félidj N, Aubard J, Lévi G (1999) Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids. J Chem Phys 111:1195

    Article  Google Scholar 

  9. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  10. Lynch DW, Hunter WR (1985) Comments on the optical constants of metals and an introduction to the data for several metals. In: Palik ED (ed) Handbook of Optical Constants of Solids. Academic Press, Orlando, pp 275–368

    Google Scholar 

  11. Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) SERS as a foundation for nanoscale, optically detected biological labels. Adv Mater 19:3100–3108

    Article  CAS  Google Scholar 

  12. McMahon JM, Wang Y, Sherry LJ, Van Duyne RP, Marks LD, Gray SK, Schatz GC (2009) Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J Phys Chem C 113:2731–2735

    Article  CAS  Google Scholar 

  13. Ringe E, McMahon JM, Sohn K, Cobley C, Xia Y, Huang J, Schatz GC, Marks LD, Van Duyne RP (2010) Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach. J Phys Chem C 114:12511–12516

    Article  CAS  Google Scholar 

  14. Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130:12616–12617

    Article  CAS  Google Scholar 

  15. Wang Y, Eswaramoorthy SK, Sherry LJ, Dieringer JA, Camden JP, Schatz GC, Van Duyne RP, Marks LD (2009) A method to correlate optical properties and structures of metallic nanoparticles. Ultramicroscopy 109:1110–1113

    Article  CAS  Google Scholar 

  16. Aikens CM, Schatz GC (2006) TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20. J Phys Chem A 110:13317–13324

    Google Scholar 

  17. Laor U, Schatz GC (1981) The role of surface roughness in surface enhanced Raman spectroscopy (SERS): the importance of multiple plasmon resonances. Chem Phys Lett 82:566–570

    Article  CAS  Google Scholar 

  18. Bohren CF, Huffman DR (1983) Absorption and Scattering of Light by Small Particles. Wiley, New York

    Google Scholar 

  19. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  20. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  21. Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324

    Article  CAS  Google Scholar 

  22. García-Vidal FJ, Pendry JB (1996) Collective theory for surface enhanced Raman scattering. Phys Rev Lett 77:1163–1166

    Article  Google Scholar 

  23. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Michael McMahon .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McMahon, J.M. (2011). Optimal SERS Nanostructures. In: Topics in Theoretical and Computational Nanoscience. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8249-0_5

Download citation

Publish with us

Policies and ethics