Global Time

  • Hermann Kopetz
Part of the Real-Time Systems Series book series (RTSS)


This chapter starts with a general discussion on time and order. The notions of causal order, temporal order, and delivery order and their interrelationships are elaborated. The parameters that characterize the behavior and the quality of a digital clock are investigated. Section 3.2 proceeds along the positivist tradition by introducing an omniscient external observer with an absolute reference clock that can generate precise time-stamps for all relevant events. These absolute time-stamps are used to reason about the precision and accuracy of a global time base, and to expose the fundamental limits of time measurement in a distributed real-time system.


Temporal Order Drift Rate Time Base Clock Synchronization Global Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Cri89]
    Cristian, F. (1989). Probabilistic Clock Synchronization. Distributed Computing. Vol. 3. Springer Verlag. (pp. 146-185).Google Scholar
  2. [Dav79]
    Davies, C.T. (1979). Data Processing Integrity. In: Computing Systems Reliability. Cambridge University Press. (pp. 288-354).Google Scholar
  3. [Eid06]
    Eidson, J. (2006). Measurement, Control and Communication Using IEEE 1588. Springer Verlag.Google Scholar
  4. [Hop78]
    Hopkins, A.L., T.B. Smith, & J.H. Lala. (1978). FTMP: A Highly Reliable Fault-Tolerant Multiprocessor for Aircraft Control. Proc. IEEE. Vol 66(10). (pp. 1221-1239).CrossRefGoogle Scholar
  5. [Kop04]
    Kopetz, H., A. Ademai, & A. Hanzlik.(2004). Integration of Internal and External Clock Synchronization by the Combination of Clock State and Clock Rate Correction in Fault Tolerant Distributed Systems. Proc. of the RTSS 2004. IEEE Press. (pp. 415-425).Google Scholar
  6. [Kop06]
    Kopetz, H. (2006). Pulsed Data Streams. In: From Model-Driven Design to Resource Management for Distributed Embedded Systems. IFIP Series 225/2006. Springer Verlag. (pp. 105-114).Google Scholar
  7. [Kop09]
    Kopetz, H. (2009). Temporal Uncertainties in Cyber-Physical Systems. Institute für Technische Informatik, TU Vienna, Report 1/2009. Vienna.Google Scholar
  8. [Kop87]
    Kopetz, H. & W. Ochsenreiter. (1987). Clock Synchronization in Distributed Real-Time Systems. IEEE Trans. Computers. Vol. 36(8). (pp. 933-940).MATHCrossRefGoogle Scholar
  9. [Kop92]
    Kopetz, H. (1992). Sparse Time versus Dense Time in Distributed Real-Time Systems. Proc. 14th Int. Conf. on Distributed Computing Systems. IEEE Press. (pp. 460-467).Google Scholar
  10. [Lam78]
    Lamport, L.(1978). Time, Clocks, and the Ordering of Events. Comm. ACM. Vol. 21(7). (pp. 558-565).MATHCrossRefGoogle Scholar
  11. [Lam82]
    Lamport, L., Shostak, R., Pease, M. (1982). The Byzantine Generals Problem. Comm. ACM TOPLAS. Vol. 4(3). (pp. 382-401).MATHCrossRefGoogle Scholar
  12. [Lam85]
    Lamport, L. & P.M. Melliar Smith. (1985). Synchronizing Clocks in the Presence of Faults. Journal of the ACM. Vol. 32(1). (pp. 52-58).MathSciNetMATHCrossRefGoogle Scholar
  13. [Lun84]
    Lundelius, L. & N. Lynch. (1984). An Upper and Lower Bound for Clock Synchronization. Information and Control. Vol. 62. (pp. 199-204).MathSciNetCrossRefGoogle Scholar
  14. [Mil91]
    Mills, D.L. (1991). Internet Time Synchronization: The Network Time Protocol. IEEE Trans. on Comm. Vol. 39(10). (pp. 1482-1493).CrossRefGoogle Scholar
  15. [Neu95]
    Neumann, P.G. (1995). Computer Related Risks. Addison Wesley—ACM Press.Google Scholar
  16. [Pea80]
    Pease, M., R. Shostak, & L. Lamport, Reaching Agreement in the Presence of Faults. Journal of the ACM, 1980. 27(2): pp. 228-234.MathSciNetMATHCrossRefGoogle Scholar
  17. [Pet96]
    Peterson, I. (1996). Comment on Time on Jan 1, 1996. Software Engineering Notes, Vol. 19(3). (p. 16).Google Scholar
  18. [Rei57]
    Reichenbach, H. (1957). The Philosophy of Space and Time. Dover, New York.Google Scholar
  19. [Sch88]
    Schwabl, W.(1988). The Effect of Random and Systematic Errors on Clock Synchronization in Distributed Systems. PhD Thesis. Technical University of Vienna, Institut für Technische Informatik.Google Scholar
  20. [Ver94]
    Verissimo, P. (1994). Ordering and Timeliness Requirements of Dependable Real-Time Programs. Real-Time Systems. Vol. 7(3). (pp. 105-128).CrossRefGoogle Scholar
  21. [Wen78]
    Wensley, J.H., et al. (1978). SIFT: The Design and Analysis of a Fault-Tolerant Computer for Aircraft Control. Proc. IEEE. Vol. 66(10). (pp. 1240-1255).CrossRefGoogle Scholar
  22. [Win01]
    Winfree, A.T. (2001). The Geometry of Biological Time. Springer Verlag.Google Scholar
  23. [Wit90]
    Withrow, G.J. (1990). The Natural Philosophy of Time. Oxford Science Publications. Clarendon Press, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer Engineering Real Time Systems GroupVienna University of TechnologyWienAustria

Personalised recommendations