Environmental Agents and Autoimmune Diseases

  • Frederick W. Miller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 711)


Autoimmune diseases, which comprise over 80 clinically distinct conditions, are characterized by the presence of autoantibodies or autoreactive T cells directed against self structures (autoantigens). While these often incurable disorders appear to be rapidly increasing in recognition throughout the world, their rarity, heterogeneity and complex etiologies have limited our understanding of their pathogeneses. The precise mechanisms for the development of autoimmune diseases are not known, however, evidence from many complementary lines of investigation suggests that autoimmune diseases result from the interactions of both environmental and genetic risk factors. While considerable progress has been made in understanding multiple genetic risk factors for many autoimmune diseases, relatively little information is now available regarding the role of the environment in the development of these illnesses. This chapter examines the limited but growing evidence for the role of the environment in the development and progression of autoimmune diseases, the specific exposures that have been suspected of being involved, the possible mechanisms by which these agents may induce and sustain autoimmune processes and the approaches needed to better understand these issues in the future. Identifying the necessary and sufficient genetic and environmental risk factors for disease holds the promise of allowing for the prevention of some illnesses through avoidance of environmental risk factors by genetically susceptible individuals or via gene or other therapies to correct the effects of deleterious genetic risk factors in the case of unavoidable environmental agents.


Silicone Breast Implant Connective Tissue Disord Idiopathic Lupus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347(12):911–920.PubMedCrossRefGoogle Scholar
  2. 2.
    WHO Task Group on Environmental Health Criteria. Environmental Health Criteria 236. Principles and Methods for Assessing Autoimmunity Associated with Exposure to Chemicals. 236, 1–324. 2006. WHO Report.Google Scholar
  3. 3.
    NIH Autoimmune Diseases chordinating Committee. NIH Autoimmune Diseases Research Plan. 1–83. 2002. U.S. Department of Health and Human Services Report.Google Scholar
  4. 4.
    National Institutes of Health Autoimmune Diseases chordinating Committee. Progress in Autoimmune Diseases Research. 1–126. 2005. Bethesda, NIH Report. NIH Publication No. 05-5140.Google Scholar
  5. 5.
    Gourley M, Miller FW. Mechanisms of disease: Environmental factors in the pathogenesis of rheumatic disease. Nat Clin Pract Rheumatol 2007; 3(3):172–180.PubMedCrossRefGoogle Scholar
  6. 6.
    Gregersen PK, Olsson LM. Recent advances in the genetics of autoimmune disease. Annu Rev Immunol 2009; 27:363–391.PubMedCrossRefGoogle Scholar
  7. 7.
    Gregersen PK. Modern genetics, ancient defenses and potential therapies. N Engl J Med 2007; 356(12):1263–1266.PubMedCrossRefGoogle Scholar
  8. 8.
    Hewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases. J Autoimmun 2009.Google Scholar
  9. 9.
    Sarasin A. An overview of the mechanisms of mutagenesis and carcinogenesis. Mutat Res 2003; 544(2–3):99–106.PubMedGoogle Scholar
  10. 10.
    Choper GS, Miller FW, Germolec DR. Occupational exposures and autoimmune diseases. Int Immunopharmacol 2002; 2(2–3):303–313.Google Scholar
  11. 11.
    Miller FW, Twitty SA, Biswas T et al. Origin and regulation of a disease-specific autoantibody response. Antigenic epitopes, spectrotype stability and isotype restriction of anti-Jo-1 autoantibodies. J Clin Invest 1990; 85(2):468–475.PubMedCrossRefGoogle Scholar
  12. 12.
    Arbuckle MR, McClain MT, Rubertone MV et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 2003; 349(16):1526–1533.PubMedCrossRefGoogle Scholar
  13. 13.
    Kokkonen H, Soderstrom I, Rocklov J et al. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum 2010; 62(2):383–391.PubMedGoogle Scholar
  14. 14.
    choper GS, Miller FW, Pandey JP. The Role of Genetic Factors in Autoimmune Disease: Implications for Environmental Research. Environ Health Perspect 1999; 107(Suppl 5):693–700.CrossRefGoogle Scholar
  15. 15.
    Leslie RD, Hawa M. Twin studies in auto-immune disease. Acta Genet Med Gemellol (Roma) 1994; 43:71–81.Google Scholar
  16. 16.
    Miller FW, Hess EV, Clauw DJ et al. Approaches for identifying and defining environmentally associated rheumatic disorders. Arthritis Rheum 2000; 43(2):243–249.PubMedCrossRefGoogle Scholar
  17. 17.
    Samuelsson U, Carstensen J. Space-time clustering at birth and at diagnosis of type 1 diabetes mellitus in relation to early clinical manifestation. J Pediatr Endocrinol Metab 2003; 16(6):859–867.PubMedCrossRefGoogle Scholar
  18. 18.
    Leff RL, Burgess SH, Miller FW et al. Distinct seasonal patterns in the onset of adult idiopathic inflammatory myopathy in patients with anti-Jo-1 and anti-signal recognition particle autoantibodies. Arthritis Rheum 1991; 34(11):1391–1396.PubMedCrossRefGoogle Scholar
  19. 19.
    Sarkar K, Weinberg CR, Oddis CV et al. Seasonal influence on the onset of idiopathic inflammatory myopathies in serologically defined groups. Arthritis Rheum 2005; 52(8):2433–2438.PubMedCrossRefGoogle Scholar
  20. 20.
    Willis JA, Scott RS, Darlow BA et al. Seasonality of birth and onset of clinical disease in children and adolescents (0–19 years) with type 1 diabetes mellitus in Canterbury, New Zealand. J Pediatr Endocrinol Metab 2002; 15(5):645–647.PubMedGoogle Scholar
  21. 21.
    Ursic-Bratina N, Battelino T, Krzisnik C et al. Seasonality of birth in children (0–14 years) with type 1 diabetes mellitus in Slovenia. J Pediatr Endocrinol Metab 2001; 14(1):47–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Haus E, Smolensky MH. Biologic rhythms in the immune system. Chronobiol Int 1999; 16(5):581–622.PubMedCrossRefGoogle Scholar
  23. 23.
    Nelson RJ, Drazen DL. Melatonin mediates seasonal changes in immune function. Ann N Y Acad Sci 2000; 917:404–415.PubMedCrossRefGoogle Scholar
  24. 24.
    Okada S, Weatherhead E, Targoff IN et al. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum 2003; 48(8):2285–2293.PubMedCrossRefGoogle Scholar
  25. 25.
    Love LA, Weinberg CR, McConnaughey R et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. arth and rheum. Arthritis Rheum. 2009; 60:2499–2504PubMedCrossRefGoogle Scholar
  26. 26.
    Ponsonby AL, McMichael A, van dM I. Ultraviolet radiation and autoimmune disease: insights from epidemiological research. Toxicology 2002; 181–182:71–78.PubMedCrossRefGoogle Scholar
  27. 27.
    Oddis CV, Conte CG, Steen VD et al. Incidence of polymyositis-dermatomyositis: a 20-year study of hospital diagnosed cases in Allegheny County, PA 1963–1982. J Rheumatol 1990; 17:1329–1334.PubMedGoogle Scholar
  28. 28.
    choper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmun Rev 2003; 2(3):119–125.CrossRefGoogle Scholar
  29. 29.
    Onkamo P, Vaananen S, Karvonen M et al. Worldwide increase in incidence of Type I diabetes—the analysis of the data on published incidence trends. Diabetologia 1999; 42(12):1395–1403.PubMedCrossRefGoogle Scholar
  30. 30.
    Uramoto KM, Michet CJ Jr, Thumboo J et al. Trends in the incidence and mortality of systemic lupus erythematosus, 1950–1992. Arthritis Rheum 1999; 42(1):46–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Jacobson DL, Gange SJ, Rose NR et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 1997; 84(3):223–243.PubMedCrossRefGoogle Scholar
  32. 32.
    Noseworthy JH, Lucchinetti C, Rodriguez M et al. Multiple sclerosis. N Engl J Med 2000; 343(13):938–952.PubMedCrossRefGoogle Scholar
  33. 33.
    Dahlquist G. The aetiology of type 1 diabetes: an epidemiological perspective. Acta Paediatr Suppl 1998; 425:5–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Philen RM, Posada dlP, Hill RH et al. Epidemiology of the toxic oil syndrome. Arch Toxicol Suppl 1997; 19:41–52.PubMedCrossRefGoogle Scholar
  35. 35.
    Sfriso P, Ghirardello A, Botsios C et al. Infections and autoimmunity: the multifaceted relationship. J Leukoc Biol 2009.Google Scholar
  36. 36.
    Ercolini AM, Miller SD. The role of infections in autoimmune disease. Clin Exp Immunol 2009; 155(1):1–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Poole BD, Templeton AK, Guthridge JM et al. Aberrant Epstein-Barr viral infection in systemic lupus erythematosus. Autoimmun Rev 2009; 8(4):337–342.PubMedCrossRefGoogle Scholar
  38. 38.
    Oguz F, Akdeniz C, Unuvar E et al. Parvovirus B19 in the acute arthropathies and juvenile rheumatoid arthritis. J Paediatr Child Health 2002; 38(4):358–362.PubMedCrossRefGoogle Scholar
  39. 39.
    Mamyrova G, Rider LG, Haagenson L et al. Parvovirus B19 and onset of juvenile dermatomyositis. JAMA 2005; 294(17):2170–2171.PubMedCrossRefGoogle Scholar
  40. 40.
    Feng Y, Ke X, Ma R et al. Parallel detection of autoantibodies with microarrays in rheumatoid diseases. Clin Chem 2004; 50(2):416–422.PubMedCrossRefGoogle Scholar
  41. 41.
    Palacios G, Druce J, Du L et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 2008; 358(10):991–998.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu W, Tang YW. Emerging molecular assays for detection and characterization of respiratory viruses. Clin Lab Med 2009; 29(4):673–693.PubMedCrossRefGoogle Scholar
  43. 43.
    Hess EV, Mongey AB. Drug-related lupus. Bull Rheum Dis 1991; 40:1–8.PubMedGoogle Scholar
  44. 44.
    Parks CG, Conrad K, choper GS. Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect 1999; 107Suppl 5:793–802.PubMedCrossRefGoogle Scholar
  45. 45.
    Pollard KM, Hultman P, Kono DH. Toxicology of Autoimmune Diseases. Chem Res Toxicol 2010.Google Scholar
  46. 46.
    Bagenstose LM, Salgame P, Monestier M. Murine mercury-induced autoimmunity: a model of chemically related autoimmunity in humans. Immunol Res 1999; 20(1):67–78.PubMedCrossRefGoogle Scholar
  47. 47.
    gmon-Levin N, Paz Z, Israeli E et al. Vaccines and autoimmunity. Nat Rev Rheumatol 2009; 5(11):648–652.CrossRefGoogle Scholar
  48. 48.
    Israeli E, gmon-Levin N, Blank M et al. Adjuvants and autoimmunity. Lupus 2009; 18(13):1217–1225.PubMedCrossRefGoogle Scholar
  49. 49.
    Advisory Committee on Immunization Practices. Update: Vaccine Side Effects, Adverse Reactions, Contraindications and Precautions Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 1996; 45(RR-12):1–35.Google Scholar
  50. 50.
    Wraith DC, Goldman M, Lambert PH. Vaccination and autoimmune disease: what is the evidence? Lancet 2003; 362(9396):1659–1666.PubMedCrossRefGoogle Scholar
  51. 51.
    Tugwell P, Wells G, Peterson J et al. Do silicone breast implants cause rheumatologic disorders? A systematic review for a court-appointed national science panel. Arthritis Rheum 2001; 44(11):2477–2484.PubMedCrossRefGoogle Scholar
  52. 52.
    Janowsky EC, Kupper LL, Hulka BS. Meta-analyses of the relation between silicone breast implants and the risk of connective-tissue diseases. N Engl J Med 2000; 342(11):781–790.PubMedCrossRefGoogle Scholar
  53. 53.
    Brown SL. Epidemiology of silicone-gel breast implants. Epidemiology 2002; 13(3 Suppl):S34–S39.PubMedCrossRefGoogle Scholar
  54. 54.
    Brown SL, Langone JJ, Brinton LA. Silicone breast implants and autoimmune disease. J Am Med Womens Assoc 1998; 53(1):21–24, 40.PubMedGoogle Scholar
  55. 55.
    O’Hanlon T, Koneru B, Bayat E et al. Immunogenetic differences between Caucasian women with and those without silicone implants in whom myositis develops. Arthritis Rheum 2004; 50(11):3646–3650.PubMedCrossRefGoogle Scholar
  56. 56.
    Cukier J, Beauchamp RA, Spindler JS et al. Association between bovine collagen dermal implants and a dermatomyositis or a polymyositis-like syndrome. Ann Int Med 1993; 118:920–928.PubMedCrossRefGoogle Scholar
  57. 57.
    Levy Y, Rotman-Pikielny P, Ehrenfeld M et al. Silicone breast implantation-induced scleroderma: description of four patients and a critical review of the literature. Lupus 2009; 18(13):1226–1232.PubMedCrossRefGoogle Scholar
  58. 58.
    Elenkov IJ, Chrousos GP. Stress, cytokine patterns and susceptibility to disease. Baillieres Best Pract Res Clin Endocrinol Metab 1999; 13(4):583–595.PubMedCrossRefGoogle Scholar
  59. 59.
    Winsa B, Adami HO, Bergstrom R et al. Stressful life events and Graves’ disease. Lancet 1991; 338(8781):1475–1479.PubMedCrossRefGoogle Scholar
  60. 60.
    Luppi P, Rossiello MR, Faas S et al. Genetic background and environment contribute synergistically to the onset of autoimmune diseases. J Mol Med 1995; 73:381–393.PubMedCrossRefGoogle Scholar
  61. 61.
    Dooley MA, Hogan SL. Environmental epidemiology and risk factors for autoimmune disease. Curr Opin Rheumatol 2003; 15(2):99–103.PubMedCrossRefGoogle Scholar
  62. 62.
    Miller FW. Non-infectious Environmental Agents and Autoimmunity. In: Rose NR, Mackay IR, eds. The Autoimmune Diseases. 4 ed. New York: Elsevier; 2006:1297–1308.Google Scholar
  63. 63.
    Miller FW. Genetics of environmentally-associated rheumatic disease. In: Kaufman LD, Varga J, eds. Rheumatic Diseases and the Environment. London: Arnold Publishers; 1999:33–45.Google Scholar
  64. 64.
    Mintzer DM, Billet SN, Chmielewski L. Drug-induced hematologic syndromes. Adv Hematol 2009; 2009:495863.PubMedGoogle Scholar
  65. 65.
    Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 1994; 179(4):1317–1330.PubMedCrossRefGoogle Scholar
  66. 66.
    Hall JC, Casciola-Rosen L, Rosen A. Altered structure of autoantigens during apoptosis. Rheum Dis Clin North Am 2004; 30(3):455–471, vii. Review.PubMedCrossRefGoogle Scholar
  67. 67.
    Burd CJ, Kinyamu HK, Miller FW et al. UV radiation regulates Mi-2 through protein translation and stability. J Biol Chem 2008; 283(50):34976–34982.PubMedCrossRefGoogle Scholar
  68. 68.
    Kuhn A, Beissert S. Photosensitivity in lupus erythematosus. Autoimmunity 2005; 38(7):519–529.PubMedCrossRefGoogle Scholar
  69. 69.
    Klareskog L, Stolt P, Lundberg K et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 2006; 54(1):38–46.PubMedCrossRefGoogle Scholar
  70. 70.
    Strickland FM, Richardson BC. Epigenetics in human autoimmunity. Epigenetics in autoimmunity—DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity 2008; 41(4):278–286.PubMedCrossRefGoogle Scholar
  71. 71.
    Burdick LM, Somani N, Somani AK. Type I IFNs and their role in the development of autoimmune diseases. Expert Opin Drug Saf 2009; 8(4):459–472.PubMedCrossRefGoogle Scholar
  72. 72.
    Scherer K, Spoerl D, Bircher AJ. Adverse drug reactions to biological response modifiers. J Dtsch Dermatol Ges 2010.Google Scholar
  73. 73.
    choper GS, Miller FW. Environmental influences on autoimmunity and autoimmune diseases. In: ai]Luebke R, editor. Immunotoxicology and Immunopharmacology. Third ed. New York: CRC Press; 2007 p. 437–454.Google Scholar
  74. 74.
    Shamim EA, Miller FW. Familial autoimmunity and the idiopathic inflammatory myopathies. Current Rheumatology Reports 2000; 2(2):201–211.PubMedCrossRefGoogle Scholar
  75. 75.
    Galloway TS, Brown RJ, Browne MA et al. The ECOMAN project: A novel approach to defining sustainable ecosystem function. Mar Pollut Bull 2006; 53(1–4):186–194.PubMedCrossRefGoogle Scholar
  76. 76.
    Sloan CD, Duell EJ, Shi X et al. Ecogeographic genetic epidemiology. Genet Epidemiol 2009; 33(4):281–289.PubMedCrossRefGoogle Scholar
  77. 77.
    Bigazzi PE. Autoimmunity caused by xenobiotics. Toxicology 1997; 119(1):1–21.PubMedCrossRefGoogle Scholar
  78. 78.
    D’Cruz D. Autoimmune diseases associated with drugs, chemicals and environmental factors. Toxicol Lett 2000; 112–113:421–432.PubMedCrossRefGoogle Scholar
  79. 79.
    Love LA, Miller FW. Noninfectious environmental agents associated with myopathies. Curr Opin Rheumatol 1993; 5(6):712–718.PubMedCrossRefGoogle Scholar
  80. 80.
    Hess EV. Environmental chemicals and autoimmune disease: cause and effect. Toxicology 2002; 181–182:65–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Volzke H, Werner A, Wallaschofski H et al. Occupational exposure to ionizing radiation is associated with autoimmune thyroid disease. J Clin Endocrinol Metab 2005; 90(8):4587–4592.PubMedCrossRefGoogle Scholar
  82. 82.
    Stolt P, Bengtsson C, Nordmark B et al. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann Rheum Dis 2003; 62(9):835–841.PubMedCrossRefGoogle Scholar
  83. 83.
    Krishnan E. Smoking, gender and rheumatoid arthritis-epidemiological clues to etiology. Results from the behavioral risk factor surveillance system. Joint Bone Spine 2003; 70(6):496–502.PubMedCrossRefGoogle Scholar
  84. 84.
    Kallberg H, Padyukov L, Plenge RM et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22 and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet 2007; 80(5):867–875.PubMedCrossRefGoogle Scholar
  85. 85.
    Vestergaard P. Smoking and thyroid disorders—a meta-analysis. Eur J Endocrinol 2002; 146(2):153–161.PubMedCrossRefGoogle Scholar
  86. 86.
    Timmer A. Environmental influences on inflammatory bowel disease manifestations. Lessons from epidemiology. Dig Dis 2003; 21(2):91–104.PubMedCrossRefGoogle Scholar
  87. 87.
    Costenbader KH, Karlson EW. Cigarette smoking and systemic lupus erythematosus: a smoking gun? Autoimmunity 2005; 38(7):541–547.PubMedCrossRefGoogle Scholar
  88. 88.
    Alaedini A, Green PH. Narrative review: celiac disease: understanding a complex autoimmune disorder. Ann Intern Med 2005; 142(4):289–298.PubMedCrossRefGoogle Scholar
  89. 89.
    Pattison DJ, Symmons DP, Lunt M et al. Dietary risk factors for the development of inflammatory polyarthritis: evidence for a role of high level of red meat consumption. Arthritis Rheum 2004; 50(12):3804–3812.PubMedCrossRefGoogle Scholar
  90. 90.
    Dally A. The rise and fall of pink disease. Soc Hist Med 1997; 10(2):291–304.PubMedCrossRefGoogle Scholar
  91. 91.
    Bigazzi PE. Autoimmunity and heavy metals. Lupus 1994; 3(6):449–453.PubMedCrossRefGoogle Scholar
  92. 92.
    Fontenot AP, Kotzin BL. Chronic beryllium disease: immune-mediated destruction with implications for organ-specific autoimmunity. Tissue Antigens 2003; 62(6):449–458.PubMedCrossRefGoogle Scholar
  93. 93.
    Bengtsson AA, Rylander L, Hagmar L et al. Risk factors for developing systemic lupus erythematosus: a case-control study in southern Sweden. Rheumatology (Oxford) 2002; 41(5):563–571.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2011

Authors and Affiliations

  • Frederick W. Miller
    • 1
  1. 1.National Institute of Environmental Health SciencesNational Institutes of Health, HHSBethesdaUSA

Personalised recommendations