Skip to main content

Epigenetic Control of Lymphocyte Differentiation

  • Chapter
Epigenetic Contributions in Autoimmune Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 711))

Abstract

Lymphocyte differentiation from haematopoietic stem cells (HSCs) is a multi-step process in which lineage fate choices are made at crucial branch points. Plasticity of common precursors is evidenced by presence of transcriptionally favourable chromatin structures at several lineage-specific loci, making them poised for further priming and regulation. Down the differentiation tree, the interplay between lineage-specific networks of transcription factors and epigenetic modifications gradually decreases the multipotency ability of precursors and increases the compromise of cells within a particular lineage. The maintenance of a cell-specific phenotype is the result of sustained gene expression programs resulting from activation of lineage-specific and repression of lineage-discrepant loci. The peripheral functional specialisation of lymphocytes requires further plasticity, to allow differentiation onto short term effectors cells, or long term memory circulating and resident cells. Impaired differentiation of lymphocytes or deregulated or unbalanced production of certain lymphocytes subsets underlies the pathogenesis of lymphoproliferation, autoimmunity and possibly immunodeficiency. Understanding epigenetic mechanisms governing lymphocyte differentiation would allow future therapeutic interventions to prevent aberrant deviations or promote beneficial cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delcuve GP, Rastegar M, Davie JR. Epigenetic control. J Cell Physiol 2009; 219(2):243–250.

    Article  PubMed  CAS  Google Scholar 

  2. Hatchwell E, Greally JM. The potential role of epigenomic dysregulation in complex human disease. Trends Genet 2007; 23(11):588–595.

    Article  PubMed  CAS  Google Scholar 

  3. Javierre BM, Esteller M, Ballestar E. Epigenetic connections between autoimmune disorders and haematological malignancies. Trends Immunol 2008; 29(12):616–623.

    Article  PubMed  CAS  Google Scholar 

  4. Lai AY, Kondo M. T and B lymphocyte differentiation from hematopoietic stem cell. Semin Immunol 2008; 20(4):207–212.

    Article  PubMed  CAS  Google Scholar 

  5. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997; 91(5):661–672.

    Article  PubMed  CAS  Google Scholar 

  6. Christensen JL, Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA 2001; 98(25):14541–14546.

    Article  PubMed  CAS  Google Scholar 

  7. Morrison SJ, Wandycz AM, Hemmati HD et al. Identification of a lineage of multipotent hematopoietic progenitors. Development 1997; 124(10):1929–1939.

    PubMed  CAS  Google Scholar 

  8. Akashi K, Traver D, Miyamoto T et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404(6774):193–197.

    Article  PubMed  CAS  Google Scholar 

  9. Peschon JJ, Morrissey PJ, Grabstein KH et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994; 180(5):1955–1960.

    Article  PubMed  CAS  Google Scholar 

  10. von Freeden-Jeffry U, Vieira P, Lucian LA et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995; 181(4):1519–1526.

    Article  Google Scholar 

  11. Lai AY, Kondo M. Asymmetrical lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. J Exp Med 2006; 203(8):1867–1873.

    Article  PubMed  CAS  Google Scholar 

  12. Kioussis D, Georgopoulos K. Epigenetic flexibility underlying lineage choices in the adaptive immune system. Science 2007; 317(5838):620–622.

    Article  PubMed  CAS  Google Scholar 

  13. Buza-Vidas N, Luc S, Jacobsen SE. Delineation of the earliest lineage commitment steps of haematopoietic stem cells: new developments, controversies and major challenges. Curr Opin Hematol 2007; 14(4):315–321.

    Article  PubMed  Google Scholar 

  14. Dias S, Xu W, McGregor S et al. Transcriptional regulation of lymphocyte development. Curr Opin Genet Dev 2008; 18(5):441–448.

    Article  PubMed  CAS  Google Scholar 

  15. Attema JL, Papathanasiou P, Forsberg EC et al. Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc Natl Acad Sci USA 2007; 104(30):12371–12376.

    Article  PubMed  CAS  Google Scholar 

  16. Maes J, Maleszewska M, Guillemin C et al. Lymphoid-affiliated genes are associated with active histone modifications in human hematopoietic stem cells. Blood 2008; 112(7):2722–2729.

    Article  PubMed  CAS  Google Scholar 

  17. Souabni A, Cobaleda C, Schebesta M et al. Pax5 promotes B lymphopoiesis and blocks T-cell development by repressing Notch1. Immunity 2002; 17(6):781–793.

    Article  PubMed  CAS  Google Scholar 

  18. Cobaleda C, Jochum W, Busslinger M. Conversion of mature B-cells into T-cells by dedifferentiation to uncommitted progenitors. Nature 2007; 449(7161):473–477.

    Article  PubMed  CAS  Google Scholar 

  19. Maeda T, Merghoub T, Hobbs RM et al. Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 2007; 316(5826):860–866.

    Article  PubMed  CAS  Google Scholar 

  20. Wada H, Masuda K, Satoh R et al. Adult T-cell progenitors retain myeloid potential. Nature 2008; 452(7188):768–772.

    Article  PubMed  CAS  Google Scholar 

  21. Bell JJ, Bhandoola A. The earliest thymic progenitors for T-cells possess myeloid lineage potential. Nature 2008; 452(7188):764–767.

    Article  PubMed  CAS  Google Scholar 

  22. Franco CB, Scripture-Adams DD, Proekt I et al. Notch/Delta signaling constrains reengineering of pro-T cells by PU.1. Proc Natl Acad Sci USA 2006; 103(32):11993–11998.

    Article  PubMed  CAS  Google Scholar 

  23. Muegge K, Young H, Ruscetti F et al. Epigenetic control during lymphoid development and immune responses: aberrant regulation, viruses and cancer. Ann NY Acad Sci 2003; 983:55–70.

    Article  PubMed  CAS  Google Scholar 

  24. Nagaoka H, Yu W, Nussenzweig MC. Regulation of RAG expression in developing lymphocytes. Curr Opin Immunol 2000; 12(2):187–190.

    Article  PubMed  CAS  Google Scholar 

  25. Yancopoulos GD, Alt FW. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 1985; 40(2):271–281.

    Article  PubMed  CAS  Google Scholar 

  26. Stanhope-Baker P, Hudson KM, Shaffer AL et al. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 1996; 85(6):887–897.

    Article  PubMed  CAS  Google Scholar 

  27. Schlissel MS. Regulating antigen-receptor gene assembly. Nat Rev Immunol 2003; 3(11):890–899.

    Article  PubMed  CAS  Google Scholar 

  28. Bergman Y, Fisher A, Cedar H. Epigenetic mechanisms that regulate antigen receptor gene expression. Curr Opin Immunol 2003; 15(2):176–181.

    Article  PubMed  CAS  Google Scholar 

  29. Chowdhury D, Sen R. Stepwise activation of the immunoglobulin mu heavy chain gene locus. EMBO J 2001; 20(22):6394–6403.

    Article  PubMed  CAS  Google Scholar 

  30. Cherry SR, Baltimore D. Chromatin remodeling directly activates V(D)J recombination. Proc Natl Acad Sci USA 1999; 96(19):10788–10793.

    Article  PubMed  CAS  Google Scholar 

  31. Hsieh CL, Gauss G, Lieber MR. Replication, transcription, CpG methylation and DNA topology in V(D)J recombination. Curr Top Microbiol Immunol 1992; 182:125–135.

    Article  PubMed  CAS  Google Scholar 

  32. Hofmeister R, Khaled AR, Benbernou N et al. Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev 1999; 10(1):41–60.

    Article  PubMed  CAS  Google Scholar 

  33. Huang J, Muegge K. Control of chromatin accessibility for V(D)J recombination by interleukin-7. J Leukoc Biol 2001; 69(6):907–911.

    PubMed  CAS  Google Scholar 

  34. Maki K, Sunaga S, Ikuta K. The V-J recombination of T-cell receptor-gamma genes is blocked in interleukin-7 receptor-deficient mice. J Exp Med 1996; 184(6):2423–2427.

    Article  PubMed  CAS  Google Scholar 

  35. Durum SK, Candeias S, Nakajima H et al. Interleukin 7 receptor control of T-cell receptor gamma gene rearrangement: role of receptor-associated chains and locus accessibility. J Exp Med 1998; 188(12):2233–2241.

    Article  PubMed  CAS  Google Scholar 

  36. Geiman TM, Muegge K. Lsh, an SNF2/helicase family member, is required for proliferation of mature Tlymphocytes. Proc Natl Acad Sci USA 2000; 97(9):4772–4777.

    Article  PubMed  CAS  Google Scholar 

  37. Mostoslavsky R, Kirillov A, Ji YH et al. Demethylation and the establishment of kappa allelic exclusion. Cold Spring Harb Symp Quant Biol 1999; 64:197–206.

    Article  PubMed  CAS  Google Scholar 

  38. Lopez Granados E, Porpiglia AS, Hogan MB et al. Clinical and molecular analysis of patients with defects in micro heavy chain gene. J Clin Invest 2002; 110(7):1029–1035.

    PubMed  Google Scholar 

  39. Parra M. Epigenetic events during B lymphocyte development. Epigenetics 2009; 4(7):462–468.

    Article  PubMed  CAS  Google Scholar 

  40. Maier H, Ostraat R, Gao H et al. Early B-cell factor choperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat Immunol 2004; 5(10):1069–1077.

    Article  PubMed  CAS  Google Scholar 

  41. Gao H, Lukin K, Ramirez J et al. Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proc Natl Acad Sci USA 2009; 106(27):11258–11263.

    Article  PubMed  CAS  Google Scholar 

  42. Walter K, Bonifer C, Tagoh H. Stem cell-specific epigenetic priming and B-cell-specific transcriptional activation at the mouse Cd19 locus. Blood 2008; 112(5):1673–1682.

    Article  PubMed  CAS  Google Scholar 

  43. Lopez-Granados E, Perez de Diego R, Ferreira Cerdan A et al. A genotype-phenotype correlation study in a group of 54 patients with X-linked agammaglobulinemia. J Allergy Clin Immunol 2005; 116(3):690–697.

    Article  PubMed  CAS  Google Scholar 

  44. Geier JK, Schlissel MS. PreBCR signals and the control of Ig gene rearrangements. Semin Immunol 2006; 18(1):31–39.

    Article  PubMed  CAS  Google Scholar 

  45. Danbara M, Kameyama K, Higashihara M et al. DNA methylation dominates transcriptional silencing of Pax5 in terminally differentiated B-cell lines. Mol Immunol 2002; 38(15):1161–1166.

    Article  PubMed  CAS  Google Scholar 

  46. Decker T, Pasca di Magliano M, McManus S et al. Stepwise activation of enhancer and promoter regions of the B-cell commitment gene Pax5 in early lymphopoiesis. Immunity 2009; 30(4):508–520.

    Article  PubMed  CAS  Google Scholar 

  47. Schebesta A, McManus S, Salvagiotto G et al. Transcription factor Pax5 activates the chromatin of key genes involved in B-cell signaling, adhesion, migration and immune function. Immunity 2007; 27(1):49–63.

    Article  PubMed  CAS  Google Scholar 

  48. Cobaleda C, Schebesta A, Delogu A et al. Pax5: the guardian of B-cell identity and function. Nat Immunol 2007; 8(5):463–470.

    Article  PubMed  CAS  Google Scholar 

  49. Delogu A, Schebesta A, Sun Q et al. Gene repression by Pax5 in B-cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 2006; 24(3):269–281.

    Article  PubMed  CAS  Google Scholar 

  50. Pridans C, Holmes ML, Polli M et al. Identification of Pax5 target genes in early B-cell differentiation. J Immunol 2008; 180(3):1719–1728.

    PubMed  CAS  Google Scholar 

  51. Holmes ML, Pridans C, Nutt SL. The regulation of the B-cell gene expression programme by Pax5. Immunol Cell Biol 2008; 86(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  52. Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol 2003; 21:205–230.

    Article  PubMed  CAS  Google Scholar 

  53. Baxter J, Sauer S, Peters A et al. Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes. EMBO J 2004; 23(22):4462–4472.

    Article  PubMed  CAS  Google Scholar 

  54. Su IH, Tarakhovsky A. Epigenetic control of B-cell differentiation. Semin Immunol 2005; 17(2):167–172.

    Article  PubMed  CAS  Google Scholar 

  55. Fujita N, Jaye DL, Geigerman C et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 2004; 119(1):75–86.

    Article  PubMed  CAS  Google Scholar 

  56. Ehrlich M, Buchanan KL, Tsien F et al. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet 2001; 10(25):2917–2931.

    Article  PubMed  CAS  Google Scholar 

  57. BlancoBetancourt CE, Moncla A, Milili M et al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood 2004; 103(7):2683–2690.

    Article  CAS  Google Scholar 

  58. Jin B, Tao Q, Peng J et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet 2008; 17(5):690–709.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lopez-Granados, E. (2011). Epigenetic Control of Lymphocyte Differentiation. In: Ballestar, E. (eds) Epigenetic Contributions in Autoimmune Disease. Advances in Experimental Medicine and Biology, vol 711. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8216-2_3

Download citation

Publish with us

Policies and ethics