Skip to main content

Chromatin Mechanisms Regulating Gene Expression in Health and Disease

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 711))

Abstract

It is now well established that the interplay of sequence-specific DNA binding proteins with chromatin components and the subsequent expression of differential genetic programs is the major determinant of developmental decisions. The last years have seen an explosion of basic research that has significantly enhanced our understanding of the basic principles of gene expression control. While many questions are still open, we are now at the stage where we can exploit this knowledge to address questions of how deregulated gene expression and aberrant chromatin programming contributes to disease processes. This chapter will give a basic introduction into the principles of epigenetics and the determinants of chromatin structure and will discuss the molecular mechanisms of aberrant gene regulation in blood cell diseases, such as inflammation and leukemia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Laat W, Klous P, Kooren J et al. Three-dimensional organization of gene expression in erythroid cells. Curr Top Dev Biol 2008; 82:117–139.

    Article  PubMed  Google Scholar 

  2. Gialitakis M, Arampatzi P, Makatounakis T et al. Interferon gamma dependent transcriptional memory via relocalization of a gene locus to PML nuclear bodies. Mol Cell Biol 2010; 30(8):2046–2056.

    Article  PubMed  CAS  Google Scholar 

  3. Mirabella F, Baxter EW, Boissinot M et al. The Human IL-3/Granulocyte-Macrophage Colony-Stimulating Factor Locus Is Epigenetically Silent in Immature Thymocytes and Is Progressively Activated during T-Cell Development. J Immunol 2010; 184(6):3043–3054.

    Article  PubMed  CAS  Google Scholar 

  4. Chen MJ, Yokomizo T, Zeigler BM et al. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457(7231):887–891.

    Article  PubMed  CAS  Google Scholar 

  5. Hoogenkamp M, Lichtinger M, Krysinska H et al. Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood 2009; 114(2):299–309.

    Article  PubMed  CAS  Google Scholar 

  6. Zlatanova J, Leuba SH, van Holde K. Chromatin structure revisited. Crit Rev Eukaryot Gene Expr 1999; 9(3–4):245–255.

    Article  PubMed  CAS  Google Scholar 

  7. Luger K, Mader AW, Richmond RK et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389(6648):251–260.

    Article  PubMed  CAS  Google Scholar 

  8. Robinson PJ, Fairall L, Huynh VA et al. EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci USA 2006; 103(17):6506–6511.

    Article  PubMed  CAS  Google Scholar 

  9. Schalch T, Duda S, Sargent DF et al. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 2005; 436(7047):138–141.

    Article  PubMed  CAS  Google Scholar 

  10. Williams SP, Athey BD, Muglia LJ et al. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J 1986; 49(1):233–248.

    Article  PubMed  CAS  Google Scholar 

  11. Woodcock CL, Frado LL, Rattner JB. The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 1984; 99(1 Pt 1):42–52.

    Article  PubMed  CAS  Google Scholar 

  12. Hu Y, Kireev I, Plutz M et al. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J Cell Biol 2009; 185(1):87–100.

    Article  PubMed  CAS  Google Scholar 

  13. Gross DS, Garrard WT. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 1988; 57:159–197.

    Article  PubMed  CAS  Google Scholar 

  14. Carrozza MJ, Li B, Florens L et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005; 123(4):581–592.

    Article  PubMed  CAS  Google Scholar 

  15. Zippo A, Serafini R, Rocchigiani M et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 2009; 138(6):1122–1136.

    Article  PubMed  CAS  Google Scholar 

  16. Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4):693–705.

    Article  PubMed  CAS  Google Scholar 

  17. Shogren-Knaak M, Ishii H, Sun JM et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006; 311(5762):844–847.

    Article  PubMed  CAS  Google Scholar 

  18. Jin C, Felsenfeld G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 2007; 21(12):1519–1529.

    Article  PubMed  CAS  Google Scholar 

  19. Enver T, Greaves M. Loops, lineage and leukemia. Cell 1998; 94(1):9–12.

    Article  PubMed  CAS  Google Scholar 

  20. Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 2009; 10(3):192–206.

    Article  PubMed  CAS  Google Scholar 

  21. Berger SL, Kouzarides T, Shiekhattar R et al. An operational definition of epigenetics. Genes Dev 2009; 23(7):781–783.

    Article  PubMed  CAS  Google Scholar 

  22. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1):6–21.

    Article  PubMed  CAS  Google Scholar 

  23. Berger J, Bird A. Role of MBD2 in gene regulation and tumorigenesis. Biochem Soc Trans 2005; 33(Pt 6):1537–1540.

    PubMed  CAS  Google Scholar 

  24. Bird A. The methyl-CpG-binding protein MeCP2 and neurological disease. Biochem Soc Trans 2008; 36(Pt 4):575–583.

    Article  PubMed  CAS  Google Scholar 

  25. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10(5):295–304.

    Article  PubMed  CAS  Google Scholar 

  26. Chen T, Li E. Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol 2006; 301:179–201.

    Article  PubMed  CAS  Google Scholar 

  27. Ooi SK, Qiu C, Bernstein E et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 2007; 448(7154):714–717.

    Article  PubMed  CAS  Google Scholar 

  28. Jia D, Jurkowska RZ, Zhang X et al. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007; 449(7159):248–251.

    Article  PubMed  CAS  Google Scholar 

  29. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  30. Boultwood J, Wainscoat JS. Gene silencing by DNA methylation in haematological malignancies. Br JH aematol 2007; 138(1):3–11.

    Article  CAS  Google Scholar 

  31. Fandy TE. Development of DNA methyltransferase inhibitors for the treatment of neoplastic diseases. Curr Med Chem 2009; 16(17):2075–2085.

    Article  PubMed  CAS  Google Scholar 

  32. Gebhard C, Benner C, Ehrich M et al. General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells. Cancer Res 70(4):1398–1407.

    Google Scholar 

  33. Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 2009; 43:143–166.

    Article  PubMed  CAS  Google Scholar 

  34. Thomson JP, Skene PJ, Selfridge J et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 2010; 464(7291):1082–1086.

    Article  PubMed  CAS  Google Scholar 

  35. Ansari KI, Mishra BP, Mandal SS. Human CpG binding protein interacts with MLL1, MLL2 and hSet1 and regulates Hox gene expression. Biochim Biophys Acta 2008; 1779(1):66–73.

    Article  PubMed  CAS  Google Scholar 

  36. Tate CM, Lee JH, Skalnik DG. CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J 2010; 277(1):210–223.

    Article  PubMed  CAS  Google Scholar 

  37. Shilatifard A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 2008; 20(3):341–348.

    Article  PubMed  CAS  Google Scholar 

  38. Tahiliani M, Koh KP, Shen Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324(5929):930–935.

    Article  PubMed  CAS  Google Scholar 

  39. Loenarz C, Schofield CJ. Oxygenase catalyzed 5-methylcytosine hydroxylation. Chem Biol 2009; 16(6):580–583.

    Article  PubMed  CAS  Google Scholar 

  40. Allen MD, Grummitt CG, Hilcenko C et al. Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J 2006; 25(19):4503–4512.

    Article  PubMed  CAS  Google Scholar 

  41. Carlone DL, Lee JH, Young SR et al. Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol Cell Biol 2005; 25(12):4881–4891.

    Article  PubMed  CAS  Google Scholar 

  42. Mullighan CG. TET2 mutations in myelodysplasia and myeloid malignancies. Nat Genet 2009; 41(7):766–767.

    Article  PubMed  CAS  Google Scholar 

  43. Abdel-Wahab O, Mullally A, Hedvat C et al. Genetic characterization of TET1, TET2 and TET3 alterations in myeloid malignancies. Blood 2009; 114(1):144–147.

    Article  PubMed  CAS  Google Scholar 

  44. Jankowska AM, Szpurka H, Tiu RV et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 2009; 113(25):6403–6410.

    Article  PubMed  CAS  Google Scholar 

  45. Ono R, Taki T, Taketani T et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 2002; 62(14):4075–4080.

    PubMed  CAS  Google Scholar 

  46. Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293(5532):1074–1080.

    Article  PubMed  CAS  Google Scholar 

  47. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31(2):89–97.

    Article  PubMed  CAS  Google Scholar 

  48. Lachner M, O’Carroll D, Rea S et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410(6824):116–120.

    Article  PubMed  CAS  Google Scholar 

  49. Bannister AJ, Zegerman P, Partridge JF et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410(6824):120–124.

    Article  PubMed  CAS  Google Scholar 

  50. Esteve PO, Chin HG, Smallwood A et al. Direct interaction between DNMT1 and G9a chordinates DNA and histone methylation during replication. Genes Dev 2006; 20(22):3089–3103.

    Article  PubMed  CAS  Google Scholar 

  51. Smallwood A, Esteve PO, Pradhan S et al. Functional choperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 2007; 21(10):1169–1178.

    Article  PubMed  CAS  Google Scholar 

  52. Nan X, Ng HH, Johnson CA et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393(6683):386–389.

    Article  PubMed  CAS  Google Scholar 

  53. Metivier R, Penot G, Hubner MR et al. Estrogen receptor-alpha directs ordered, cyclical and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003; 115(6):751–763.

    Article  PubMed  CAS  Google Scholar 

  54. Schlesinger Y, Straussman R, Keshet I et al. Polycomb-mediated methylation on Lys27 of histone H3 premarks genes for de novo methylation in cancer. Nat Genet 2007; 39(2):232–236.

    Article  PubMed  CAS  Google Scholar 

  55. Ohm JE, McGarvey KM, Yu X et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39(2):237–242.

    Article  PubMed  CAS  Google Scholar 

  56. Wang Z, Zang C, Rosenfeld JA et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008; 40(7):897–903.

    Article  PubMed  CAS  Google Scholar 

  57. Wang Z, Zang C, Cui K et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009; 138(5):1019–1031.

    Article  PubMed  CAS  Google Scholar 

  58. Ghisletti S, Barozzi I, Mietton F et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity.

    Google Scholar 

  59. Cirillo LA, Lin FR, Cuesta I et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Molecular Cell 2002; 9(2):279–289.

    Article  PubMed  CAS  Google Scholar 

  60. Cockerill PN. NFAT is well placed to direct both enhancer looping and domain-wide models of enhancer function. Sci Signal 2008; 1(13):pe15.

    Article  PubMed  Google Scholar 

  61. Hogan PG, Chen L, Nardone J et al. Transcriptional regulation by calcium, calcineurin and NFAT. Genes Dev 2003; 17(18):2205–2232.

    Article  PubMed  CAS  Google Scholar 

  62. Mellor J. Dynamic nucleosomes and gene transcription. Trends Genet 2006; 22(6):320–329.

    Article  PubMed  CAS  Google Scholar 

  63. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 2007; 76:75–100.

    Article  PubMed  CAS  Google Scholar 

  64. Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447(7143):407–412.

    Article  PubMed  CAS  Google Scholar 

  65. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128(4):707–719.

    Article  PubMed  CAS  Google Scholar 

  66. Johnson BV, Bert AG, Ryan GR et al. GM-CSF enhancer activation requires choperation between NFAT and AP-1 elements and is associated with extensive nucleosome reorganization. Mol Cell Biol 2004; 24(18):7914–7930.

    Article  PubMed  CAS  Google Scholar 

  67. Bert AG, Johnson BV, Baxter EW et al. A modular enhancer is differentially regulated by GATA and NFAT elements that direct different tissue-specific patterns of nucleosome positioning and inducible chromatin remodeling. Mol Cell Biol 2007; 27(8):2870–2885.

    Article  PubMed  CAS  Google Scholar 

  68. Lefevre P, Witham J, Lacroix CE et al. The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol Cell 2008; 32(1):129–139.

    Article  PubMed  CAS  Google Scholar 

  69. Hassan AH, Prochasson P, Neely KE et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 2002; 111(3):369–379.

    Article  PubMed  CAS  Google Scholar 

  70. Marmorstein R, Berger SL. Structure and function of bromodomains in chromatin-regulating complexes. Gene 2001; 272(1–2):1–9.

    Article  PubMed  CAS  Google Scholar 

  71. Vermeulen M, Mulder KW, Denissov S et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 2007; 131(1):58–69.

    Article  PubMed  CAS  Google Scholar 

  72. Muramoto T, Muller I, Thomas G et al. Methylation of H3K4 Is Required for Inheritance of Active Transcriptional States. Curr Biol 20(5):397–406.

    Google Scholar 

  73. Wang GG, Song J, Wang Z et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 2009; 459(7248):847–851.

    Article  PubMed  CAS  Google Scholar 

  74. Bowen DT. Chronic myelomonocytic leukemia: lost in classification? Hematol Oncol 2005; 23(1):26–33.

    Article  PubMed  Google Scholar 

  75. Russell NH. Autocrine growth factors and leukaemic haemopoiesis. Blood Rev 1992; 6(3):149–156.

    Article  PubMed  CAS  Google Scholar 

  76. Birnbaum RA, O’Marcaigh A, Wardak Z et al. Nf1 and Gmcsf interact in myeloid leukemogenesis. Mol Cell 2000; 5(1):189–195.

    Article  PubMed  CAS  Google Scholar 

  77. Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML-and AML-like diseases in mice. Blood 2006; 108(7):2349–2357.

    Article  PubMed  CAS  Google Scholar 

  78. Ramshaw HS, Bardy PG, Lee MA et al. Chronic myelomonocytic leukemia requires granulocyte-macrophage colony-stimulating factor for growth in vitro and in vivo. Exp Hematol 2002; 30(10):1124–1131.

    Article  PubMed  CAS  Google Scholar 

  79. Van Waes C. Nuclear factor-kappaB in development, prevention and therapy of cancer. Clin Cancer Res 2007; 13(4):1076–1082.

    Article  PubMed  Google Scholar 

  80. Bargou RC, Emmerich F, Krappmann D et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 1997; 100(12):2961–2969.

    Article  PubMed  CAS  Google Scholar 

  81. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer 2009; 9(1):15–27.

    Article  PubMed  Google Scholar 

  82. Mathas S, Janz M, Hummel F et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 2006; 7(2):207–215.

    Article  PubMed  CAS  Google Scholar 

  83. Bonifer C, Hume DA. The transcriptional regulation of the Colony-Stimulating Factor 1 Receptor (csf1r) gene during hematopoiesis. Front Biosci 2008; 13:549–560.

    Article  PubMed  CAS  Google Scholar 

  84. Lamprecht B, Walter K, Kreher S et al. De-repression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nature Medicine 2010; 16(5):571–579.

    Article  PubMed  CAS  Google Scholar 

  85. Szyf M. Epigenetic therapeutics in autoimmune disease. Clin Rev Allergy Immunol 2009.

    Google Scholar 

  86. Zhou Y, Lu Q. DNA methylation in T-cells from idiopathic lupus and drug-induced lupus patients. Autoimmun Rev 2008; 7(5):376–383.

    Article  PubMed  CAS  Google Scholar 

  87. Richardson B. DNA methylation and autoimmune disease. Clin Immunol 2003; 109(1):72–79.

    Article  PubMed  CAS  Google Scholar 

  88. Mi XB, Zeng FQ. Hypomethylation of interleukin-4 and-6 promoters in T-cells from systemic lupus erythematosus patients. Acta Pharmacol Sin 2008; 29(1):105–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bonifer, C., Cockerill, P.N. (2011). Chromatin Mechanisms Regulating Gene Expression in Health and Disease. In: Ballestar, E. (eds) Epigenetic Contributions in Autoimmune Disease. Advances in Experimental Medicine and Biology, vol 711. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8216-2_2

Download citation

Publish with us

Policies and ethics