Skip to main content

Surface Reconstruction and Geometric Modeling for Digital Prosthesis Design

  • Chapter
  • First Online:
  • 1474 Accesses

Abstract

The restoration and recovery of a defective skull can be performed through operative techniques to implant a customized prosthesis. Recently, image processing, surface reconstruction, and geometric methods have been used for digital prosthesis design. In this chapter, we review state-of-the-art approaches in this field and discuss related issues. The field of prosthesis modeling may include methods for segmentation and surface reconstruction, geometric modeling, multiscale methods, and user interaction approaches. So, we present the background in the area by reviewing methods in isosurface extraction from 3D images, deformable models, wavelets, and subdivision surfaces. Then, we discuss some proposals in this area: a balloon model for slice-by-slice bone reconstruction, the T-Surfaces plus isosurface generation models as a general framework for surface reconstruction and user interaction, wavelets-based multiscale methods, and filling holes methods. We describe also experimental results and a computational tool that we are developing for image processing and visualization which can be used for digital prosthesis design. We offer a discussion by presenting some perspectives and issues related to the models described on previous sections. Finally, we present the conclusions of our work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. -Matic for biomedical research. http://www.materialise.com/BiomedicalRnD/3-matic

  2. INCT-MACC – Brazilian Virtual Institute for Applications of Scientific Computing in Medicine. URL http://www.lncc.br/

  3. Mimics. http://www.materialise.com/mimics

  4. NumPy. URL http://numpy.scipy.org/. Acessado em: 15 dez. 2009

  5. Portal of brazilian public software. URL http://www.softwarepublico.gov.br

  6. Python programming language. URL http://www.python.org. Acessado em: 18 dez. 2009

  7. Scipy. URL http://www.scipy.org/. Acessado em: 15 dez. 2009

  8. Allgower EL, Georg K (1990) Numerical continuation methods: an introduction. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  9. Barequet G, Sharir M (1995) Filling gaps in the boundary of a polyhedron. Comput Aided Geom Des 12(2):207–229

    Article  Google Scholar 

  10. Bhargava D, Bartlett P, Russell J, Liddington M, Tyagi A, Chumas P (2010) Construction of titanium cranioplasty plate using craniectomy bone flap as template. Acta Neurochir 152(1):173–176

    Article  PubMed  CAS  Google Scholar 

  11. Carneiro BP, Silva CT, Kaufman AE (1996) Tetra-cubes: an algorithm to generate 3D isosurfaces based upon tetrahedra. In: International symposium on computer graphics, image processing and vision (SIBGRAPI’96)

    Google Scholar 

  12. Catmull E, Clark J (1978) Recursively generated b-spline surfaces on arbitrary topological meshes. Comput Aided Des 10:350–355

    Article  Google Scholar 

  13. Chiang YJ, Silva C, Schroeder W (1998) Interactive out-of-core isosurface extraction. In: Proceedings of IEEE visualization 1998, pp 167–174

    Google Scholar 

  14. Cohen LD (1991) On active contour models and balloons. CVGIP:Image Underst 53(2):211–218

    Article  Google Scholar 

  15. Di Lorenzo N, Pirillo V (2008) From computerized tomography data processing to rapid manufacturing of custom-made prostheses for cranioplasty case report comment. J Neurosurg Sci 52(4):116

    Google Scholar 

  16. van Ginneken B, Frangi A, Staal J, ter Haar Romeny B, Viergever M (2002) Active shape model segmentation with optimal features. IEEE Trans Med Imaging 21(8):924–933

    Article  PubMed  Google Scholar 

  17. Giraldi G, Strauss E, Apolinario A, Oliveira AF (2001) An initialization method for deformable models. In: 5th World multiconference on systemics, cybernetics and informatics (SCI 2001)

    Google Scholar 

  18. Giraldi GA, Oliveira AAF, Carvalho L (2005) Mining cellular automata databases throug pca models. http://arxivorg/abs/cs/0511052

    Google Scholar 

  19. Goiato MC, Anchieta RB, Pita MS, dos Santos DM (2009) Reconstruction of skull defects: currently available materials. J Craniofac Surg 20(5):1512–1518

    Article  PubMed  Google Scholar 

  20. Graps A (2004) Historical perspective. http://www.amara.com/IEEEwave/IW\\_history.html

  21. House DH, Breen DE (eds) (2000) Cloth modeling and animation. A K Peters, Natick, MA

    Google Scholar 

  22. Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  23. Johnson R, Wichern D (1998) Applied multivariate statistical analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  24. Kai CC, Meng CS, Ching LS, Hoe EK, Fah LK (2009) Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci 16(1):56–63

    Article  Google Scholar 

  25. Laeven P, Poukens J, Beerens MMA (2003) 3-Matic assists in true rapid design and manufacturing of a custom skull implant. Technical report, Materialize, www.materialise.com/download/en/2706472/file

  26. Lauric R, Frisken S (2007) Soft segmentation of CT Brain Data. Technical Report TR-2007-3, Department of Computer Science – Tufts University, Medford, MA

    Google Scholar 

  27. Lee SC, Wu CT, Lee ST, Chen PJ (1998) Rapid prototyping assisted surgery planning. Int J Adv Manuf Technol 14(9):624–630

    Article  Google Scholar 

  28. Lee MY, Chang CC, Lin CC, Lo LJ, Chen YR (2002) Custom implant design for patients with cranial defects. IEEE Eng Med Biol Mag 21(2):38–44

    Article  PubMed  Google Scholar 

  29. Levin A (1999) Filling n-sided holes using combined subdivision schemes. In: Laurent PJ, Sablonniere P, Schumaker LL (eds) Curve and surface design. Vanderbilt University Press, Nashville, TN, pp 221–228

    Google Scholar 

  30. Lin L, Zhang J, Fang M (2008) Modelling the bio-scaffold for repairing symmetrical and unsymmetrical defective skull. In: The 2nd International conference on bioinformatics and biomedical engineering, 2008 (ICBBE 2008). pp 905–908, doi:10.1109/ICBBE.2008.222

    Google Scholar 

  31. Liulan L, Hanqing L, Qingxi H, Limin L, Minglun F (2006) Research of the method of reconstructing the repair bionic scaffold based on tissue engineering. IET Conference Publications 2006(CP524):1275–1279

    Google Scholar 

  32. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169

    Article  Google Scholar 

  33. McInerney T, Terzopoulos D (1999) Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans Med Imaging 18(10):840–850

    Article  PubMed  CAS  Google Scholar 

  34. Meyer Y (1992) Wavelets and operators. Cambridge University Press, Cambridge

    Google Scholar 

  35. Pfeifle R, Seidel HP (1996) Triangular b-splines for blending & filling of polygonal holes. In: Proceedings of the conference on Graphics interface’96, pp 186–193

    Google Scholar 

  36. Pianykh OS (2008) Digital imaging and communications in medicine (DICOM): a practical introduction and survival guide. Springer, Berlin/Heidelberg

    Google Scholar 

  37. Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics. Springer, Berlin

    Google Scholar 

  38. Sabin M (1991) Cubic recursive division with bounded curvature. In: Laurent PJ, le Mehaute A, Schumaker LL (eds) Curves and surfaces, Academic, Boston, pp 411–414

    Chapter  Google Scholar 

  39. Sanan AM, Haines SJM (1997) Repairing holes in the head: a history of cranioplasty. Neurosurgery 40(3):588–603

    PubMed  CAS  Google Scholar 

  40. Sethian JA (1996) Level set methods: evolving interfaces in geometry, fluid mechanics, computer vision and materials sciences. Cambridge University Press, Cambridge

    Google Scholar 

  41. Strauss E, Jimenez W, Giraldi G, Silva R, Oliveira A (2002) A surface extraction approach based on multi-resolution methods and T-surfaces framework. Technical report, National Laboratory for Scientific Computing, ftp://ftp.lncc.br/pub/report/rep02/rep1002.ps.Z

  42. Strauss E, Jimenez W, Giraldi GA, Silva R, Oliveira AF (2002) A semi-automatic surface reconstruction framework based on T-surfaces and isosurface extraction methods. In: International symposium on computer graphics, image processing and vision (SIBGRAPI’2002)

    Google Scholar 

  43. Suri JS, Liu K, Singh S, Laxminarayan S, Zeng X, Reden L (2002) Shape recovery algorithms using level sets in 2-d/3-d medical imagery: a state-of-the-art review. IEEE Trans Inf Technol Biomed 6(1):8–28

    Article  PubMed  Google Scholar 

  44. Sutton P, Hansen C (2000) Accelerated isosurface extraction in time-varying fields. IEEE Trans Vis Comp Graph 6(2):98–107

    Article  Google Scholar 

  45. Volino P, Magnenat-Thalmann N (2000) Virtual clothing: theory and practice. Springer, Berlin

    Book  Google Scholar 

  46. Wang Y (2005) The study of three-dimensional reconstructed bioceramics in the successional defect of mandible. The Second Military Medical University, Shanghai

    Google Scholar 

  47. Witten G (1993) Scale space tracking and deformable sheet models for computational vision. IEEE Trans Pattern Anal Mach Intell 15(7):697–706

    Article  Google Scholar 

  48. You F, Hu Q, Yao Y, Lu Q (2009) A new modeling method on skull defect repair. In: International conference on Measuring technology and mechatronics automation, 2009 (ICMTMA’09) 1(11–12):568–572

    Google Scholar 

  49. Zhao Y, Zhou J (2006) The analysis of clinical effect of individualized cranioplasty with different materials for 75 skull defect patients. Med J Chin People’s Liberation Army 31:354–355

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq (grant 133865/2009-6) and INCT-MACC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz C. M. de Aquino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Aquino, L.C.M., Giraldi, G.A., Rodrigues, P.S.S., Junior, A.L.A., Cardoso, J.S., Suri, J.S. (2011). Surface Reconstruction and Geometric Modeling for Digital Prosthesis Design. In: El-Baz, A., Acharya U, R., Laine, A., Suri, J. (eds) Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8204-9_8

Download citation

Publish with us

Policies and ethics