Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 488 Accesses

Abstract

The generation and detection of terahertz (THz) frequency electromagnetic radiation and the study of materials interaction occurring in this frequency regime has been of considerable interest to the scientific community of late. The term terahertz is typically used to indicate the region of electromagnetic spectrum between the frequencies 100 GHz (100 × 109 Hz) and 10 THz (10 × 1012 Hz) corresponding to the sub-millimeter wavelength range 3 mm to 30 μm between the microwave and the infra-red bands. Terahertz radiation is often commonly referred to as T-rays or simply abbreviated as THz. Much of the scientific interest in T-rays is due to the unique properties of this type of radiation. Unlike X-rays, THz waves have very low photon energy and thus cannot lead to harmful photoionization in biological samples. THz waves are also transparent to most dry dielectric materials like wood, paper, cloth, and plastic and as such suffer less scattering than visible and IR waves due to their longer wavelengths. Furthermore, many biological and chemical compounds exhibit characteristic absorption and dispersion signatures in the THz regime due to vibrational and rotational transitions. This implies that THz radiation might be used to examine the chemical composition of such compounds. Together, these properties make T-rays an excellent source for medical diagnostics and non destructive evaluation type of application. Yet, until late 1980s this part of the electromagnetic spectrum was least explored due to the technical difficulties involved in developing efficient and compact THz sources and detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, Y.-S.: Principles of Terahertz Science and Technology, Chaps. 3 & 4. Springer Science+Business Media LLC, New York (2009)

    Google Scholar 

  2. Zhang, X.-C., Xu, J.: Introduction to THz Wave Photonics. Springer Science+Business Media LLC, New York (2010)

    Google Scholar 

  3. Nagel, M., Richter, F., Brucherseifer, M., Bolivar, P.H., Kurz, H., Bosserhoff, A., Buttner, R.: Integrated THz technology for label free genetic diagnostics. Appl. Phys. Lett. 80, 154 (2002)

    Article  ADS  Google Scholar 

  4. Woodward, R.M., Cole, B.E., Wallace, V.P., Pye, R.J., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853 (2002)

    Article  Google Scholar 

  5. Taday, P.F., Bradley, I.V., Arnone, D.D., Pepper, M.: Using terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. J. Pharm. Sci. 92, 831 (2003)

    Article  Google Scholar 

  6. Yamashita, M., Kawase, K., Otani, C., Kiwa, T., Tonouchi, M.: Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt. Express 13, 115 (2005)

    Article  ADS  Google Scholar 

  7. Shen, Y., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R., Kemp, M.C.: Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 1–241116 (2005)

    Google Scholar 

  8. Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549 (2003)

    Article  ADS  Google Scholar 

  9. Zhong, H., Xu, J., Xie, X., Yuan, T., Reightler, R., Madaras, E., Zhang, X.-C.: Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. 5, 203 (2005)

    Article  Google Scholar 

  10. Orenstein, J., Corson, J., Oh, S., Eckstein, J.N.: Superconducting fluctuations in Bi2Sr2Ca1−x Dy x Cu2O8+δ as seen by terahertz spectroscopy. Ann. Phys. 15, 596 (2006)

    Article  Google Scholar 

  11. Huber, R., Brodschelm, A., Tauser, F., Leitenstorfer, A.: Generation and field resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191 (2000)

    Article  ADS  Google Scholar 

  12. Shi, W., Ding, Y.J., Fernelius, N., Vodopyanov, K.: Efficient, tunable and coherent 0.18–5.27-THz source based on GaSe crystal. Opt. Lett. 27, 1454 (2002)

    Article  ADS  Google Scholar 

  13. Nahata, A., Weling, A.S., Heinz, T.F.: A wideband coherent terahertz spectroscopy system using optical rectification and electrooptic sampling. Appl. Phys. Lett. 69, 2321 (1996)

    Article  ADS  Google Scholar 

  14. Han, P.Y., Zhang, X.-C.: Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol. 12, 1747 (2001)

    Article  ADS  Google Scholar 

  15. Chang, G., Divin, C.J., Hung, L.C., Williamson, S.L., Galvanauskas, A., Norris, T.B.: Power scalable compact THz system based on an ultrafast Yb doped fiber amplifier. Opt. Express 14, 7909 (2006)

    Article  ADS  Google Scholar 

  16. Xie, X., Xu, J., Zhang, X.-C.: Terahertz wave generation and detection from a CdTe crystal characterized by different excitation wavelengths. Opt. Lett. 31, 978 (2006)

    Article  ADS  Google Scholar 

  17. Hu, B.B., Zhang, X.-C., Auston, D.H., Smith, P.R.: Free-space radiation from electrooptic crystals. Appl. Phys. Lett. 56, 506 (1990)

    Article  ADS  Google Scholar 

  18. Zhang, X.-C., Ma, X.F., Jin, Y., Lu, T.-M., Boden, E.P., Phelps, P.D., Stewart, K.R., Yakymyshyn, C.P.: Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 61, 3080 (1992)

    Article  ADS  Google Scholar 

  19. Zhang, X.C., Jin, Y., Ma, X.F.: Coherent measurement of terahertz optical rectification from electrooptic crystals. Appl. Phys. Lett 61, 2764 (1992)

    Article  ADS  Google Scholar 

  20. Yang, K.H., Richards, P.L., Shen, Y.R.: Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Appl. Phys. Lett. 19, 320 (1971)

    Article  ADS  Google Scholar 

  21. Zhong, H., Karpowicz, N., Zhang, X.-C.: Terahertz emission profile from laser-induced air plasma. Appl. Phys. Lett. 88, 1–261103 (2006)

    Google Scholar 

  22. Wilke, I., Sengupta, S.: Nonlinear Optical Techniques for Terahertz Pulse Generation and Detection—Optical Rectification and Electrooptic Sampling. In: Dexheimer, S.L. (ed.) Terahertz Spectroscopy: Principles and Applications, Optical Science and Engineering, vol. 131, p. 41. CRC Press, Boca Raton (2007)

    Google Scholar 

  23. Lucca, A., Debourg, G., Jacquemet, M., Druon, F., Balembois, F., Georges, P., Camy, P., Doualan, J.L., Moncorgé, R.: High-power diode pumped Yb:CaF2 femtosecond laser. Opt. Lett. 29, 2767 (2004)

    Article  ADS  Google Scholar 

  24. Druon, F., Chénais, S., Raybaut, P., Balembois, F., Georges, P., Gaumé, R., Aka, G., Viana, B., Mohr, S., Kopf, D.: Diode-pumped Yb:BOYS femtosecond laser. Opt. Lett. 27, 197 (2002)

    Article  ADS  Google Scholar 

  25. Tsunami, Spectra-Physics, Manual

    Google Scholar 

  26. Planken, P.C.M., van Rijmenam, C.E.W.M., Schouten, R.N.: Opto-electronic pulsed THz systems. Semicond. Sci. Technol. 28, S121 (2005)

    Article  Google Scholar 

  27. Kono, S., Tani, M., Sakai, K.: Generation and detection of broadband pulsed terahertz radiation. In: Sakai, K. (ed.) Terahertz Optoelectronics. Topics in Applied Physics, vol. 97, p. 31. Springer, Berlin (2005)

    Google Scholar 

  28. Goldberg, Y.A., Shmidt, N.M.: Gallium indium arsenide. In: Levinshtein, M., Rumayantsev, S., Shur, M.S. (eds.) Handbook Series on Semiconductor Parameters, vol. 2, p. 62. World Scientific, Singapore (1999)

    Google Scholar 

  29. Ko, Y., Sengupta, S., Tomasulo, S., Dutta, P., Wilke, I.: Emission of terahertz-frequency electromagnetic radiation from bulk Ga x In1−x As crystals. Phys. Rev. B 78, 035201 (2008)

    Article  ADS  Google Scholar 

  30. Baker, C., Gregory, I.S., Tribe, W.R., Bradley, I.V., Evans, M.J., Withers, M., Taday, P.F., Wallace, V.P., Linfield, E.H., Davies, A.G., Missous, M.: THz-pulse imaging with 1.06 μm laser excitation. Appl. Phys. Lett. 83, 4113 (2003)

    Article  ADS  Google Scholar 

  31. Suzuki, M., Tonouchi, M.: Fe-implanted InGaAs emitters for 1.56 mm wavelength excitation. Appl. Phys. Lett 86, 1–051104 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suranjana Sengupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sengupta, S. (2011). Introduction. In: Characterization of Terahertz Emission from High Resistivity Fe-doped Bulk Ga0.69In0.31As Based Photoconducting Antennas. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8198-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8198-1_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8197-4

  • Online ISBN: 978-1-4419-8198-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics