• Suranjana Sengupta
Part of the Springer Theses book series (Springer Theses)


The generation and detection of terahertz (THz) frequency electromagnetic radiation and the study of materials interaction occurring in this frequency regime has been of considerable interest to the scientific community of late. The term terahertz is typically used to indicate the region of electromagnetic spectrum between the frequencies 100 GHz (100 × 109 Hz) and 10 THz (10 × 1012 Hz) corresponding to the sub-millimeter wavelength range 3 mm to 30 μm between the microwave and the infra-red bands. Terahertz radiation is often commonly referred to as T-rays or simply abbreviated as THz. Much of the scientific interest in T-rays is due to the unique properties of this type of radiation. Unlike X-rays, THz waves have very low photon energy and thus cannot lead to harmful photoionization in biological samples. THz waves are also transparent to most dry dielectric materials like wood, paper, cloth, and plastic and as such suffer less scattering than visible and IR waves due to their longer wavelengths. Furthermore, many biological and chemical compounds exhibit characteristic absorption and dispersion signatures in the THz regime due to vibrational and rotational transitions. This implies that THz radiation might be used to examine the chemical composition of such compounds. Together, these properties make T-rays an excellent source for medical diagnostics and non destructive evaluation type of application. Yet, until late 1980s this part of the electromagnetic spectrum was least explored due to the technical difficulties involved in developing efficient and compact THz sources and detectors.


Frequency Electromagnetic Radiation Accelerate Crucible Rotation Technique Yttrium Vanadate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lee, Y.-S.: Principles of Terahertz Science and Technology, Chaps. 3 & 4. Springer Science+Business Media LLC, New York (2009)Google Scholar
  2. 2.
    Zhang, X.-C., Xu, J.: Introduction to THz Wave Photonics. Springer Science+Business Media LLC, New York (2010)Google Scholar
  3. 3.
    Nagel, M., Richter, F., Brucherseifer, M., Bolivar, P.H., Kurz, H., Bosserhoff, A., Buttner, R.: Integrated THz technology for label free genetic diagnostics. Appl. Phys. Lett. 80, 154 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Woodward, R.M., Cole, B.E., Wallace, V.P., Pye, R.J., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853 (2002)CrossRefGoogle Scholar
  5. 5.
    Taday, P.F., Bradley, I.V., Arnone, D.D., Pepper, M.: Using terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. J. Pharm. Sci. 92, 831 (2003)CrossRefGoogle Scholar
  6. 6.
    Yamashita, M., Kawase, K., Otani, C., Kiwa, T., Tonouchi, M.: Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt. Express 13, 115 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Shen, Y., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R., Kemp, M.C.: Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 1–241116 (2005)Google Scholar
  8. 8.
    Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Zhong, H., Xu, J., Xie, X., Yuan, T., Reightler, R., Madaras, E., Zhang, X.-C.: Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. 5, 203 (2005)CrossRefGoogle Scholar
  10. 10.
    Orenstein, J., Corson, J., Oh, S., Eckstein, J.N.: Superconducting fluctuations in Bi2Sr2Ca1−xDyxCu2O8+δ as seen by terahertz spectroscopy. Ann. Phys. 15, 596 (2006)CrossRefGoogle Scholar
  11. 11.
    Huber, R., Brodschelm, A., Tauser, F., Leitenstorfer, A.: Generation and field resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Shi, W., Ding, Y.J., Fernelius, N., Vodopyanov, K.: Efficient, tunable and coherent 0.18–5.27-THz source based on GaSe crystal. Opt. Lett. 27, 1454 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Nahata, A., Weling, A.S., Heinz, T.F.: A wideband coherent terahertz spectroscopy system using optical rectification and electrooptic sampling. Appl. Phys. Lett. 69, 2321 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Han, P.Y., Zhang, X.-C.: Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol. 12, 1747 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Chang, G., Divin, C.J., Hung, L.C., Williamson, S.L., Galvanauskas, A., Norris, T.B.: Power scalable compact THz system based on an ultrafast Yb doped fiber amplifier. Opt. Express 14, 7909 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Xie, X., Xu, J., Zhang, X.-C.: Terahertz wave generation and detection from a CdTe crystal characterized by different excitation wavelengths. Opt. Lett. 31, 978 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Hu, B.B., Zhang, X.-C., Auston, D.H., Smith, P.R.: Free-space radiation from electrooptic crystals. Appl. Phys. Lett. 56, 506 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, X.-C., Ma, X.F., Jin, Y., Lu, T.-M., Boden, E.P., Phelps, P.D., Stewart, K.R., Yakymyshyn, C.P.: Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 61, 3080 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, X.C., Jin, Y., Ma, X.F.: Coherent measurement of terahertz optical rectification from electrooptic crystals. Appl. Phys. Lett 61, 2764 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Yang, K.H., Richards, P.L., Shen, Y.R.: Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Appl. Phys. Lett. 19, 320 (1971)ADSCrossRefGoogle Scholar
  21. 21.
    Zhong, H., Karpowicz, N., Zhang, X.-C.: Terahertz emission profile from laser-induced air plasma. Appl. Phys. Lett. 88, 1–261103 (2006)Google Scholar
  22. 22.
    Wilke, I., Sengupta, S.: Nonlinear Optical Techniques for Terahertz Pulse Generation and Detection—Optical Rectification and Electrooptic Sampling. In: Dexheimer, S.L. (ed.) Terahertz Spectroscopy: Principles and Applications, Optical Science and Engineering, vol. 131, p. 41. CRC Press, Boca Raton (2007)Google Scholar
  23. 23.
    Lucca, A., Debourg, G., Jacquemet, M., Druon, F., Balembois, F., Georges, P., Camy, P., Doualan, J.L., Moncorgé, R.: High-power diode pumped Yb:CaF2 femtosecond laser. Opt. Lett. 29, 2767 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Druon, F., Chénais, S., Raybaut, P., Balembois, F., Georges, P., Gaumé, R., Aka, G., Viana, B., Mohr, S., Kopf, D.: Diode-pumped Yb:BOYS femtosecond laser. Opt. Lett. 27, 197 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Tsunami, Spectra-Physics, ManualGoogle Scholar
  26. 26.
    Planken, P.C.M., van Rijmenam, C.E.W.M., Schouten, R.N.: Opto-electronic pulsed THz systems. Semicond. Sci. Technol. 28, S121 (2005)CrossRefGoogle Scholar
  27. 27.
    Kono, S., Tani, M., Sakai, K.: Generation and detection of broadband pulsed terahertz radiation. In: Sakai, K. (ed.) Terahertz Optoelectronics. Topics in Applied Physics, vol. 97, p. 31. Springer, Berlin (2005)Google Scholar
  28. 28.
    Goldberg, Y.A., Shmidt, N.M.: Gallium indium arsenide. In: Levinshtein, M., Rumayantsev, S., Shur, M.S. (eds.) Handbook Series on Semiconductor Parameters, vol. 2, p. 62. World Scientific, Singapore (1999)Google Scholar
  29. 29.
    Ko, Y., Sengupta, S., Tomasulo, S., Dutta, P., Wilke, I.: Emission of terahertz-frequency electromagnetic radiation from bulk GaxIn1−xAs crystals. Phys. Rev. B 78, 035201 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Baker, C., Gregory, I.S., Tribe, W.R., Bradley, I.V., Evans, M.J., Withers, M., Taday, P.F., Wallace, V.P., Linfield, E.H., Davies, A.G., Missous, M.: THz-pulse imaging with 1.06 μm laser excitation. Appl. Phys. Lett. 83, 4113 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Suzuki, M., Tonouchi, M.: Fe-implanted InGaAs emitters for 1.56 mm wavelength excitation. Appl. Phys. Lett 86, 1–051104 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC  2011

Authors and Affiliations

  1. 1.Intel CorporationHillsboroUSA

Personalised recommendations