Advertisement

State-of-the-Art Medical Image Registration Methodologies: A Survey

  • Fahmi Khalifa
  • Garth M. Beache
  • Georgy Gimel’farb
  • Jasjit S. Suri
  • Ayman S. El-BazEmail author
Chapter

Abstract

Almost all computer vision applications, from remote sensing and cartography to medical imaging and biometrics, use image registration or alignment techniques that establish spatial correspondence (one-to-one mapping) between two or more images. These images depict either one planar (2-D) or volumetric (3-D) scene or several such scenes and can be taken at different times, from various viewpoints, and/or by multiple sensors. In medical image processing and analysis, the image registration is instrumental for clinical diagnosis and therapy planning, e.g., to follow disease progression and/or response to treatment, or integrate information from different sources/modalities to form more detailed descriptions of anatomical objects-of-interest. The unified registration goal – aligning a 2-D or 3-D target (sensed) image with a reference image – is reached by specifying a mathematical model of image transformations for and determining model parameters of the desired alignment. Frequently, the parameters provide an optimum of a goal function supported by the parameter space, so that the registration reduces to a certain optimization problem. This chapter overviews the 2-D and the 3-D medical image registration with special reference to the state-of-the-art robust techniques proposed for the last decade and discusses their advantages, drawbacks, and practical implementations.

Keywords

Image registration Similarity functions Image transformations Global registration Nonrigid registration Numerical optimization Image resampling 

References

  1. 1.
    Hill DLG, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46(3):R1–R45PubMedCrossRefGoogle Scholar
  2. 2.
    Hallpike L, Hawkes DJ (2002) Medical image registration: an overview. Imaging (Br Inst Radiol) 14(6):455–463Google Scholar
  3. 3.
    Khaissidi G, Tairi H, Aarab A (2009) A fast medical image registration using feature points. Int J Graph Vis Image Process (GVIP) 9(3)Google Scholar
  4. 4.
    Li H, Manjunath BS, Mitra SK (1995) A contour-based approach to multisensor image registration. IEEE Trans Image Process 4(3):320–334PubMedCrossRefGoogle Scholar
  5. 5.
    Xia M, Liu B (2004) Image registration by super-curves. IEEE Trans Image Process 13(4):720–732PubMedCrossRefGoogle Scholar
  6. 6.
    Viola P, Wells WM III (1997) Alignment by maximization of mutual information. Int J Comput Vis 24(2):137–154CrossRefGoogle Scholar
  7. 7.
    Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multimodality medical image registration using information theory. In: Proceeding of the 14th international conference on information processing in medical imaging (IPMI’95), June 1995, pp 263–274Google Scholar
  8. 8.
    Azar A, Xu C, Pennec X, Ayache N (2006) An interactive hybrid non-rigid registration framework for 3-D medical images. In: Proceeding of the international symposium on biomedical imaging (ISBI’06), Arlington, Virginia, April, pp 824–827Google Scholar
  9. 9.
    Cachier P, Mangin J-F, Pennec X, Rivière D, Orfanos DP, Régis J, Ayache N (2001) Multisubject non-rigid registration of brain MRI using intensity and geometric features. In: Proceeding of the 4th international conference on medical image computing and computer-assisted intervention (MICCAI’01), October 2001, pp 734–742Google Scholar
  10. 10.
    Hellier P, Barillot C (2003) Coupling dense and landmark-based approaches for nonrigid registration. IEEE Trans Med Imaging 22(2):217–227PubMedCrossRefGoogle Scholar
  11. 11.
    West J, Fitzpatrick JM, Wang MY et al (1997) Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 21(4):554–566PubMedCrossRefGoogle Scholar
  12. 12.
    Hurvitz A, Joskowicz L (2008) Registration of a CT-like atlas to fluoroscopic X-ray images using intensity correspondences. Int J Comput Assist Radiol Surg 3(6):493–504CrossRefGoogle Scholar
  13. 13.
    Mattes D, Haynor DR, Vesselle H, Lewellen TK, Eubank W (2003) PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging 22(1):120–128PubMedCrossRefGoogle Scholar
  14. 14.
    Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18(8):712–721PubMedCrossRefGoogle Scholar
  15. 15.
    Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585CrossRefGoogle Scholar
  16. 16.
    Bajcsy R, Kovacic S (1989) Multiresolution elastic matching. Comput Vis Graph Image Process 46(1):1–21CrossRefGoogle Scholar
  17. 17.
    Davis MH, Khotanzad A, Flamig DP, Harms SE (1997) A physics-based coordinate transformation for 3-D image matching. IEEE Trans Med Imaging 26(3):317–328CrossRefGoogle Scholar
  18. 18.
    Gee JC (1999) On matching brain volumes. Pattern Recognit 32(1):99–111CrossRefGoogle Scholar
  19. 19.
    D’Agostino E, Maes F, Vandermeulen D, Suetens P (2003) A viscous fluid model for multimodal non-rigid image registration using mutual information. Med Image Anal 7(4):565–575PubMedCrossRefGoogle Scholar
  20. 20.
    Avants B, Gee JC (2004) Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage 23(1):S139–S150PubMedCrossRefGoogle Scholar
  21. 21.
    Fischer B, Modersitzki J (2004) A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl 380:107–124CrossRefGoogle Scholar
  22. 22.
    Arsigny V, Pennec X, Ayache N (2005) Polyrigid and polyaffine transformations: A novel geometrical tool to deal with non-rigid deformations application to the registration of histological slices. Med Image Anal 9(6):507–523PubMedCrossRefGoogle Scholar
  23. 23.
    du Bois d’Aische A, Craene MD, Geets X (2005) Efficient multimodal dense field nonrigid registration: alignment of histological and section images. Med Image Anal 9(6):538–546PubMedCrossRefGoogle Scholar
  24. 24.
    Beg F, Miller M, Trouve A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139–157CrossRefGoogle Scholar
  25. 25.
    Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45(1):S61–S72PubMedCrossRefGoogle Scholar
  26. 26.
    Jacoby SLS, Kowalik JS, Pizzo JT (1972) Iterative methods for nonlinear optimization problems. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  27. 27.
    Press W, Flannery B, Teukolsky S, Vetterling W (1992) Numerical recipes in C. Cambridge University Press, Cambridge, UKGoogle Scholar
  28. 28.
    Matsopoulos GK, Mouravliansky NA, Delibasis KK, Nikita KS (1999) Automatic retinal image registration scheme using global optimization techniques. IEEE Trans Info Technol Biomed 3(1):47–60CrossRefGoogle Scholar
  29. 29.
    Goldberg D (1989) Genetic algorithms in optimization, search and machine learning. Addison-Wesley, Reading, MAGoogle Scholar
  30. 30.
    Aarts E, Laardhoven Van (1987) Simulated annealing: theory and practice. Wiley, New YorkGoogle Scholar
  31. 31.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding of the IEEE international conference neural network, Perth, Australia, November 1995, vol 4, pp 1942–1945Google Scholar
  32. 32.
    Wolberg G, Zokai S (2000) Robust image registration using log-polar transform. In: Proceeding of the IEEE international conference image process (ICIP’00), Vancouver, BC, Canada, September 2000, vol 1. pp 493–496Google Scholar
  33. 33.
    Kuglin CD, Hines DC (1975) The phase correlation image alignment method. In: Proceeding of the IEEE International Conference Cybern Society, September 1975, pp 163–165Google Scholar
  34. 34.
    Reddy S, Chatterji BN (1996) An FFT-based technique for translation, rotation, and scale invariant image registration. IEEE Trans Image Process 3(8):1266–1270CrossRefGoogle Scholar
  35. 35.
    Milanfar P (1996) Projection-based, frequency-domain estimation of superimposed translational motions. J Opt Soc Am A Opt Image Sci 13(11):2151–2162CrossRefGoogle Scholar
  36. 36.
    Foroosh H, Zerubia J, Berthod M (2002) Extension of phase correlation to subpixel registration. IEEE Trans Image Process 11(3):188–200PubMedCrossRefGoogle Scholar
  37. 37.
    Chen Q, Defrise M, Deconinck F (1994) Symmetric phase-only matched filtering of Fourier- Mellin transforms for image registration and recognition. IEEE Trans Pattern Anal Mach Intell 16(12):1156–1168CrossRefGoogle Scholar
  38. 38.
    De Castro E, Morandi C (1987) Registration of translated and rotated images using finite Fourier transforms. IEEE Trans Pattern Anal Mach Intell 9(5):700–703CrossRefPubMedGoogle Scholar
  39. 39.
    Casasent D, Psaltis D (1976) Position, rotation, and scale invariant optical correlation. Appl Opt 15:1793–1799Google Scholar
  40. 40.
    Lehmann TM (1998) A two stage algorithm for model-based registration of medical images. In: Proceeding of the international conference on pattern recognition. (ICPR’98), Brisbane, Australia, August 1998, vol 1. pp 344–352Google Scholar
  41. 41.
    Lehmann T, Goerke C, Schmitt W, Kaupp A, Repges R (1996) A rotation-extended cepstrum technique optimized by systematic analysis of various sets of X-ray image. Proc SPIE Med Imaging Image Process 2710:390–401Google Scholar
  42. 42.
    Wang J, Reinstein LE, Hanley J, Meek AG (1996) Investigation of a phase-only correlation technique for anatomical alignment of portal images in radiation therapy. Phys Med Biol 41(6):1045–1058PubMedCrossRefGoogle Scholar
  43. 43.
    Shekarforoush H, Berthod M, Zerubia J (1996) Subpixel image registration by estimating the polyphase decomposition of cross power spectrum. In: Proceeding of the IEEE computer society conference on computer vision and pattern recognition (CVPR’96), Los Alamitos, CA, June 1996, pp 532–537Google Scholar
  44. 44.
    Zokai S, Wolberg G (2005) Image registration using log-polar mappings for recovery of large scale similarity and projective transformations. IEEE Trans Image Process 14(10):1422–1434PubMedCrossRefGoogle Scholar
  45. 45.
    Matungka R, Zheng YF, Ewing RL (2009) Image registration using adaptive polar transform. IEEE Trans Image Process 18(10):2340–2354PubMedCrossRefGoogle Scholar
  46. 46.
    Wang X, Feng DD (2009) Non-iterative hierarchical registration for medical images. J Signal Process Sys 54(1–3):65–77CrossRefGoogle Scholar
  47. 47.
    Arora H, Namboodiri AM, Jawahar CV (2008) Robust image registration with illumination, blur, and noise variation for super-resolution. In: Proceeding of the IEEE international conference on acoustics, speech, and signal processing (ICASSP’08), Las Vegas, NV, March 2008, pp 1301–1304Google Scholar
  48. 48.
    Vandewalle P, Süsstrunk S, Vetterli M (2006) A frequency domain approach to registration of aliased images with application to super-resolution. J Appl Signal Process 2006:1–14 (article ID 71459)CrossRefGoogle Scholar
  49. 49.
    van Dalen JA, Huisman HJ, Welmers A, Barentsz JO (2003) Semi-automatic image registration of MRI to CT data of the prostate using gold markers as fiducials. In: 2nd International workshop on biomedical image registration (WBIR’03), Revised Papers (Lecture notes in computer science), vol 2717. Philadelphia, PA, 23–24 June 2003, pp 311–320Google Scholar
  50. 50.
    Qiao F, Yue Y, Pan T, Clark JW Jr, Mawlawi O (2004) Segmentation of contrast enhanced CT images for attenuation correction of PET/CT data. In: Nuclear science symposium conference record, Rome, Italy, October 2004, vol 5. pp 2686–2689Google Scholar
  51. 51.
    Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17(4):536–546PubMedCrossRefGoogle Scholar
  52. 52.
    Gill S, Mousavi P, Fichtinger G, Pichora D, Abolmaesumi P (2009) Group-wise registration of ultrasound to CT images of human vertebrae. In: Proceeding of the SPIE medical imaging: visualization, image-guided procedures, and modeling, vol 7261, pt 1, pp 72611O-1–72611O-9Google Scholar
  53. 53.
    Periaswamy S, Farid H (2006) Medical image registration with partial data. Med Image Anal 10(3):452–464PubMedCrossRefGoogle Scholar
  54. 54.
    Brown L (1992) A survey of image registration techniques. ACM Comput Surv 24(4):326–376Google Scholar
  55. 55.
    Maurer CR, Fitzpatrick T (1993) A review of medical image registration. Interact Image Guided Neurosurg 17–44Google Scholar
  56. 56.
    van den Elsen PA, Pol E-J, Viergever MA (1993) Medical image matching: a review with classification. IEEE Eng Med Biol 12:26–39CrossRefGoogle Scholar
  57. 57.
    Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36PubMedCrossRefGoogle Scholar
  58. 58.
    Lester H, Arridge SR (1999) A survey of hierarchical non-linear medical image registration. Pattern Recognit 32:129–149CrossRefGoogle Scholar
  59. 59.
    Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000CrossRefGoogle Scholar
  60. 60.
    Amit Y (1997) Graphical shape templates for automatic anatomy detection with applications to MRI brain scan. IEEE Trans Med Imaging 16(1):28–40PubMedCrossRefGoogle Scholar
  61. 61.
    Subsol G, Thirion JP, Ayache N (1998) A general scheme for automatically building 3-D morphometric anatomical atlases: application to a skull atlas. Med Image Anal 2(1):37–60PubMedCrossRefGoogle Scholar
  62. 62.
    Ge Y, Fitzpatrick JM, Kessler RM, Janicka MJ (1995) Inter-subject brain image registration using both cortical and subcortical landmarks. Proc SPIE Med Imaging Image Process 2434:81–95Google Scholar
  63. 63.
    Can A, Stewart CV, Roysam B, Tanenbaum HL (2002) A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE Trans Pattern Anal Mach Intell 24(3):347–364CrossRefGoogle Scholar
  64. 64.
    Szeliski R, Lavallee S (1994) Matching 3-D anatomical surfaces with nonrigid deformations using octree-splines. In: Proceedings of the IEEE workshop on biomedical image analysis, Seattle, WA, June 1994, pp 144–153Google Scholar
  65. 65.
    Thompson PM, Toga AW (1996) A surface-based technique for warping 3-dimensional images of the brain. IEEE Trans Med Imaging 15(4):402–417PubMedCrossRefGoogle Scholar
  66. 66.
    Audette MA, Ferrie FP, Peters TM (2000) An algorithmic overview of surface registration techniques for medical imaging. Med Image Anal 4(3):201–217PubMedCrossRefGoogle Scholar
  67. 67.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  68. 68.
    Yasein MS, Agathoklis P (2008) A feature-based image registration technique for images of different scale. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS’08), Seattle, WA, May 2008, pp 3558–3561Google Scholar
  69. 69.
    Pope P, Theiler J (2003) Automated image registration (AIR) of MTI imagery. Proc SPIE 27:294–305CrossRefGoogle Scholar
  70. 70.
    Barnea DI, Silverman HF (1972) A class of algorithms for fast digital image registration. IEEE Trans Comput C-21(2):179–186CrossRefGoogle Scholar
  71. 71.
    Althof RJ, Wind MG, Dobbins JT (1997) A rapid and automatic image registration algorithm with subpixel accuracy. IEEE Trans Med Imaging 16(3):308–316PubMedCrossRefGoogle Scholar
  72. 72.
    Maes F, Collignon A (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198PubMedCrossRefGoogle Scholar
  73. 73.
    Chen H-M, Varshney PK (2000) A pyramid approach for multimodality image registration based on mutual information. In: Proceedings of the 3rd international conference on information fusion (ISIF’00), July 2000, I:9–I:15Google Scholar
  74. 74.
    Pluim JPW, Maintz JBA, Viergever MA (2000) Image registration by maximization of combined mutual information and gradient information. IEEE Trans Med Imaging 19(8):809–814PubMedCrossRefGoogle Scholar
  75. 75.
    Netsch T, Rosch P, Muiswinkel A, Weese J (2001) Towards real-time multi-modality 3-D medical image registration. In: Proceeding of the 8th international conference on computer vision (ICCV’01), Vancouver, BC, Canada, July 2001, vol 1, pp 718–725Google Scholar
  76. 76.
    Shekhar R, Zagrodsky V (2002) Mutual information-based rigid and nonrigid registration of ultrasound volumes. IEEE Trans Med Imaging 21(1):9–22PubMedCrossRefGoogle Scholar
  77. 77.
    Tsao J (2003) Interpolation artifacts in multimodality image registration based on maximization of mutual information. IEEE Trans Med Imaging 22(7):854–863PubMedCrossRefGoogle Scholar
  78. 78.
    Rohde GK, Aldroubi A, Dawant BM (2003) The adaptive bases algorithm for intensity based nonrigid image registration. IEEE Trans Med Imaging 22(11):1470–1479PubMedCrossRefGoogle Scholar
  79. 79.
    Bhagalia R, Fessler JA, Kim B (2009) Accelerated nonrigid intensity-based image registration using importance sampling. IEEE Trans Med Imaging 28(8):1208–1216PubMedCrossRefGoogle Scholar
  80. 80.
    Peng X, Ding M, Zhou C, Ma Q (2004) A practical two-step image registration method for two-dimensional images. Inf Fusion 5(4):283–298CrossRefGoogle Scholar
  81. 81.
    Hipwell J, Tanner C, Crum W, Hawkes D (2006) X-ray mammogram registration: a novel validation method. In: Proceeding of the 8th international workshop on digital mammography (IWDM’06), Manchester, UK, 18–21 June 2006 (Lecture notes in computer science), vol 4046. pp 197–204Google Scholar
  82. 82.
    Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3-D medical image alignment. Pattern Recognit 32(1):71–86CrossRefGoogle Scholar
  83. 83.
    Bracewell RN (1965) The Fourier transform and its applications. McGraw-Hill, New YorkGoogle Scholar
  84. 84.
    Junck L, Moen JG, Hutchins GD, Brown MB, Kuhl DE (1990) Correlation methods for the centering, rotation, and alignment of functional brain images. J Nucl Med 31(7):1220–1276PubMedGoogle Scholar
  85. 85.
    van den Elsen PA, Viergever MA (1993) Automated CT and MR brain image registration using geometrical feature correlation. In: Proceedings of the nuclear science symposium and medical imaging conference, San Francisco, CA, November 1993, vol 3. pp 1827–1830Google Scholar
  86. 86.
    van den Elsen PA, Pol EJ, Sumanaweera TS, Hemler PF, Napel S, Adler J (1994) Grey value correlation techniques used for automatic matching of CT and MR brain and spine images. Proc SPIE Vis Biomed Comput 2359:227–237Google Scholar
  87. 87.
    Radcliffe T, Rajapakshe R, Shalev S (1994) Pseudocorrelation: a fast, robust, absolute, grey level image alignment algorithm. Med Phys 21(6):761–769PubMedGoogle Scholar
  88. 88.
    McParland BJ, Kumaradas JC (1995) Digital portal image registration by sequential anatomical matchpoint and image correlations for real-time continuous field alignment verification. Med Phys 22(7):1063–1075PubMedCrossRefGoogle Scholar
  89. 89.
    Andersson JLR (1995) A rapid and accurate method to realign PET scans utilizing image edge information. J Nucl Med 36(4):657–669Google Scholar
  90. 90.
    Dong L, Boyer AL (1996) A Portal image alignment and patient setup verification procedure using moments and correlation techniques. Phys Med Biol 41(4):697–723PubMedCrossRefGoogle Scholar
  91. 91.
    Goshtasby A, Gage SH, Bartholic JF (1984) A two-stage cross-correlation approach to template matching. IEEE Trans Pattern Anal Mach Intell 6(3):374–378CrossRefPubMedGoogle Scholar
  92. 92.
    Lewis JP (1995) Fast template matching. In: Proceedings of the Canadian image processing pattern recognition society conference on vision interface, Quebec City, Canada, May 1995, pp 120–123Google Scholar
  93. 93.
    Berthilsson R (1998) Affine correlation. In: Proceedings of the 14th international conference on pattern recognition (ICPR’98), Brisbane, Australia, August 1998, vol 2. pp 1458–1461Google Scholar
  94. 94.
    Zhao F, Huang Q, Gao W (2006) Image matching by normalized cross-correlation. In: Proceeding of the IEEE international conference on acoustics, speech, and signal processing, Toulouse, May 2006, vol 2. pp 729–732Google Scholar
  95. 95.
    Yeung MM, Yeo B, Liou S, Hashemi AB (1994) Three-dimensional image registration for spiral CT angiography. In: Proceeding of the IEEE computer society conference on computer vision and pattern recognition (CVPR’94), Los Alamitos, CA, June 1994, pp 423–429Google Scholar
  96. 96.
    Christensen GE, Rabbitt RD, Miller MI, Joshi SC, Grenander U, Coogan TA, Van Essen DC (1995) Topological properties of smooth anatomic maps. In: Proceedings of the 16th international conference on information processing medical imaging (IPMI’95), Ile de Berder, France, June 1995, pp 101–112Google Scholar
  97. 97.
    Hajnal JV, Saeed N, Oatridge A, Williams EJ, Young IR, Bydder GM (1995) Detection of subtle brain changes using subvoxel registration and subtraction of serial MR images. J Comput Assist Tomogr 19(5):677–691PubMedCrossRefGoogle Scholar
  98. 98.
    Guimond A, Roche A, Ayache N, Meunier J (2001) Three-dimensional multimodal brain warping using the demons algorithm and adaptive intensity corrections. IEEE Trans Med Imaging 20(1):58–69PubMedCrossRefGoogle Scholar
  99. 99.
    Periaswamy S, Farid H (2003) Elastic registration in the presence of intensity variations. IEEE Trans Med Imaging 22(7):865–874PubMedCrossRefGoogle Scholar
  100. 100.
    Unser M, Thevenaz P, Lee C, Ruttimann UE (1995) Registration and statistical analysis of PET images using the wavelet transform. IEEE Eng Med Biol 14(5):603–611CrossRefGoogle Scholar
  101. 101.
    Eberl S, Kanno I, Fulton RR, Ryan A, Hutton BF, Fulham MJ (1996) Automated interstudy image registration technique for SPECT and PET. J Nucl Med 37(1):137–145PubMedGoogle Scholar
  102. 102.
    Haller JW, Christensen GE, Joshi SC, Newcomer JW, Miller MI, Csernansky JG, Vannier MW (1996) Hippocampal MR imaging morphometry by means of general pattern matching. Radiology 199(3):787–791PubMedGoogle Scholar
  103. 103.
    Bhat DN, Nayar SK (1998) Ordinal measures for image correspondence. IEEE Trans Pattern Anal Mach Intell 20(4):415–423CrossRefGoogle Scholar
  104. 104.
    Studholme C (1997) Measures of 3-D medical image alignment. Ph.D. thesis, University of London, London, UKGoogle Scholar
  105. 105.
    Viola PA (1995) Alignment by maximization of mutual information. Ph.D. thesis, Massachusetts Institute of Technology, Artificial Intelligence LaboratoryGoogle Scholar
  106. 106.
    Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1):35–51PubMedCrossRefGoogle Scholar
  107. 107.
    Maes F, Vandermeulen D, Suetuns P (2003) Medical image registration using mutual information. IEEE Proc 91(10):1699–1722CrossRefGoogle Scholar
  108. 108.
    Collignon A, Vandermeulen D, Suetens P, Marchal G (1995) 3D multi-modality medical image registration using feature space clustering. In: Proceedings of the 1st international conference on computer vision, virtual reality and robotics in medicine, Nice, France, April 1995, pp 195–204Google Scholar
  109. 109.
    Studholme C, Hill D, Hawkes D (1995) Multiresolution voxel similarity measures for MR-PET registration. In: Bizais Y, Barillot C, di Paola R (eds) Information processing in medical imaging. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 287–298Google Scholar
  110. 110.
    Rangarajan A, Chui H, Duncan JS (1999) Rigid point feature registration using mutual information. Med Image Anal 3(4):1–17Google Scholar
  111. 111.
    Zhu YM (2002) Volume image registration by cross-entropy optimization. IEEE Trans Med Imaging 21(2):174–180PubMedGoogle Scholar
  112. 112.
    Pluim JPW, Maintz JBA, Viergever MA (2004) f-information measures in medical image registration. IEEE Trans Med Imaging 23(12):1508–1516PubMedCrossRefGoogle Scholar
  113. 113.
    Parzen E (1962) On the estimation of probability density function. Ann Math Stat 33:1065–1076CrossRefGoogle Scholar
  114. 114.
    Niu C (2005) Medical image registration based on mutual information using Kriging probability density estimation. In: Proceedings of the IEEE 27th annual conference engineering in medicine and biology, Shanghai, China, September 2005, pp 3097–3099Google Scholar
  115. 115.
    Rangarajan A, Duncan JS (1998) Matching point features using mutual information. In: Proceedings of the IEEE workshop on biomedical image analysis (WBIA’98), Santa Barbara, CA, June 1998, pp 172–181Google Scholar
  116. 116.
    Liu C, Li K, Liu Z (2005) Medical image registration by maximization of combined mutual information and edge correlative deviation. In: Proceeding of the IEEE 27th annual conference engineering in medicine and biology, Shanghai, China, September 2005, pp 6379–6382Google Scholar
  117. 117.
    El-Baz A, Gimel’farb G (2007) A new framework for automatic registration of 2D/3D texture images. In: Proceedings of the British machine vision conference (BMVC’07), University of Warwick, UK, September 2007, pp 100–109Google Scholar
  118. 118.
    El-Baz A, Gimel’farb G (2008) Global image registration based on learning the prior appearance model. In: Proceeding of IEEE conference on computer vision pattern recognition (CVPR’08), Anchorage, AK, June 2008, pp 1–7Google Scholar
  119. 119.
    Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16(4):620–633PubMedCrossRefGoogle Scholar
  120. 120.
    Freeborough PA, Fox NC (1997) The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans Med Imaging 16(5):623–629PubMedCrossRefGoogle Scholar
  121. 121.
    Hill DLG (1993) Combination of 3-D medical images from multiple modalities. Ph.D. thesis, University of LondonGoogle Scholar
  122. 122.
    Hill DL, Hawkes DJ, Harrison NA, Ruff CF (1993) A strategy for automated multimodality image registration incorporating anatomical knowledge and imager characteristics. In: Proceedings of the 13th international conference on information processing in medical imaging (IPMI’93), June 1993, pp 182–196Google Scholar
  123. 123.
    Ardekani BA, Braun M, Kanno I, Hutton BF (1994) Automatic detection of intradural spaces in MR images. J Comput Assist Tomogr 18(6):963–969PubMedCrossRefGoogle Scholar
  124. 124.
    Zuo CS, Jiang A, Buff BL, Mahon TG, Wong TZ (1996) Automatic motion correction for breast MR imaging. Radiology 198(3):903–906PubMedGoogle Scholar
  125. 125.
    Cox GS, de Jager G (1994) Automatic registration of temporal image pairs for digital subtraction angiography. Proc SPIE Med Imaging Image Process 2167:188–199Google Scholar
  126. 126.
    Ardekani BA, Braun M, Hutton BF, Kanno I, Lida H (1995) A fully automatic multimodality image registration algorithm. J Comput Assist Tomogr 19(4):615–623PubMedCrossRefGoogle Scholar
  127. 127.
    Buzug T, Weese J (1996) Improving DSA images with an automatic algorithm based on template matching and an entropy measure. Comput Assist Radiol 1124:145–150Google Scholar
  128. 128.
    Hill DLG, Studholme C, Hawkes DJ (1994) Voxel similarity measures for automated image registration. Proc SPIE Vis Biomed Comput 2359:205–216Google Scholar
  129. 129.
    Venot A, Golmard JL, Lebruchec JF, Pronzato L, Walter E, Frij G, Roucayrol JC (1983) Digital methods for change detection in medical images. In: Proceedings of the 9th conference on information processing in medical imaging (IPMI’83), June 1983, vol 8, pp 1–16Google Scholar
  130. 130.
    Venot A, Lebruchec JF, Roucayrol JC (1984) A new class of similarity measures for robust image registration. Comput Vis Graph Image Process 28(3):176–184CrossRefGoogle Scholar
  131. 131.
    Venot A, Leclerc V (1984) Automated correction of patient motion and gray values to subtraction in digitized angiography. IEEE Trans Med Imaging 3(4):179–186PubMedCrossRefGoogle Scholar
  132. 132.
    Hua P, Fram I (1993) Feature-based image registration for digital subtraction angiography. Proc SPIE Med Imaging Image Process 1898:24–31Google Scholar
  133. 133.
    Hoh CK, Dahlbom M, Harris G, Choi Y, Hawkins RA, Phelps ME, Maddahi J (1993) Automated iterative three-dimensional registration of positron emission tomography images. J Nucl Med 34(11):2009–2018PubMedGoogle Scholar
  134. 134.
    Venot A, Pronzato L, Walter E (1994) Comments about the coincident bit counting (CBC) criterion for image registration. IEEE Trans Med Imaging 13(3):565–566PubMedCrossRefGoogle Scholar
  135. 135.
    Perault C, Wampach H, Liehn J, Three dimensional SPECT myocardial rest-stress subtraction images after automated registration and normalization. In: Bizais Y et al. (eds) Proceeding of the 14th international conference on information processing medical images (IPMI’95), Kluwer Academic, Dordrecht, The Netherlands, pp 391–392Google Scholar
  136. 136.
    Hashemi AB, Krishnan A, Samaddar S (1996) Warped matching for digital subtraction of CT-angiography studies. Proc SPIE Med Imaging Image Process 2710:428–437Google Scholar
  137. 137.
    Shields K, Barber DC, Sheriff SB (1993) Image registration for the investigation of atherosclerotic plaque movement. In: Proceedings of the 13th international conference on information processing in medical imaging (IPMI’93), June 1993, vol 687, pp 438–458Google Scholar
  138. 138.
    Bandari E, Xiang QS, Little J (1994) Visual echo registration of magnetic resonance images. In: Application of computer vision medical image processing (AAAI’94), Spring Symposium Series, Stanford University, Stanford, CA, pp 38–41Google Scholar
  139. 139.
    Barber DC, Tindale WB, Hunt E, Mayes A, Sagar HJ (1995) Automatic registration of SPECT images as an alternative to immobilization in neuroactivation studies. Phys Med Biol 40(3):449–463PubMedCrossRefGoogle Scholar
  140. 140.
    Meunier J, Guimond A, Janicki C, Imbert B, Soucy J (1996) Automatic 3-D registration of brain SPECT images. In: Proceeding of the international congress of computational assisted radiology (Excerpta Medica– international congress series), vol 1124, pp 187–192Google Scholar
  141. 141.
    Little JA, Hill DLG, Hawkes DJ (1997) Deformations incorporating rigid structures. Comput Vis Image Understand 66(2):223–232CrossRefGoogle Scholar
  142. 142.
    Zagorchev L, Goshtasby A (2006) A comparative study of transformation functions for nonrigid image registration. IEEE Trans Image Process 15(3):529–538PubMedCrossRefGoogle Scholar
  143. 143.
    Rivlin TJ (1969) Least-squares approximation. In: An introduction to the approximation of functions, Blaisdell Publishing Company, New York, pp 48–65Google Scholar
  144. 144.
    Stockman G, Kopstein S, Benett S (1982) Matching images to models for registration and object detection via clustering. IEEE Trans Pattern Anal Mach Intell 4(3):229–241CrossRefPubMedGoogle Scholar
  145. 145.
    Harder RL, Desmarais RN (1972) Interpolation using surface splines. J Aircraft 9(2):189–191CrossRefGoogle Scholar
  146. 146.
    Meinguet J (1978) An intrinsic approach to multivariate spline interpolation at arbitrary points, polynomial and spline approximation. In: Proceedings of the NATO advanced study institute, Calgary, Canada, August, pp 163–190Google Scholar
  147. 147.
    Goshtasby A (1988) Registration of image with geometric distortion. IEEE Trans Geosci Remote Sens 26(1):60–64CrossRefGoogle Scholar
  148. 148.
    Grimson WEL (1982) A computational theory of visual surface interpolation. Philos Trans R Soc Lond B Biol Sci 298(1092):395–427PubMedGoogle Scholar
  149. 149.
    Chui H, Rangarajan A (2000) A new algorithm for non-rigid point matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR’00), Hilton Head Island, SC, June 2000, vol 2. pp 44–51Google Scholar
  150. 150.
    Johnson HJ, Christensen GE (2002) Consistent landmark and intensity-based image registration. IEEE Trans Med Imaging 21(5):450–461PubMedCrossRefGoogle Scholar
  151. 151.
    J Lim, MH Yang. A direct method for modeling non-rigid motion with thin plate spline. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR’05), July 2005, vol 1. pp 1196–1202Google Scholar
  152. 152.
    Eriksson AP, Astrom K (2006) Bijective image registration using thin-plate splines. In: Proceedings of the 18th IEEE international conference on pattern recognition (ICPR’06), Hong Kong, China, September 2006, vol 3. pp 798–801Google Scholar
  153. 153.
    Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348CrossRefGoogle Scholar
  154. 154.
    Beatson RK, Newsam GN (1992) Fast evaluation of radial basis functions. Int J Comput Math Appl 24(12):7–19CrossRefGoogle Scholar
  155. 155.
    Flusser J (1992) An adaptive method for image registration. Pattern Recognit 25(1):45–54CrossRefGoogle Scholar
  156. 156.
    Barrodale I, Skea D, Berkley M, Kuwahara R, Poeckert R (1993) Warping digital images using thin plate splines. Pattern Recognit 26(2):375–376CrossRefGoogle Scholar
  157. 157.
    Rohr K (2001) Landmark-based image analysis using geometric and intensity models (computational imaging and vis. series). Kluwer Academic, Dordrecht, The NetherlandsGoogle Scholar
  158. 158.
    Evans AC, Dai W, Collins L, Neelin P, Marrett S (1991) Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis. Proc SPIE Med Imaging Image Process 1445:236–247Google Scholar
  159. 159.
    Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. Comput Graph 20(4):151–160Google Scholar
  160. 160.
    Lee S, Wolberg G, Chwa K-Y, Shin SY (1996) Image metamorphosis with scattered feature constraints. IEEE Trans Vis Comput Graph 2(4):337–354Google Scholar
  161. 161.
    Lee S, Wolberg G, Shin SY (1997) Scattered data interpolation with multilevel B-splines. IEEE Trans Vis Comput Graph 3(3):228–244CrossRefGoogle Scholar
  162. 162.
    Arad N, Dyn N, Reisfeld D, Yeshurun Y (1994) Image warping by radial basis functions: application to facial expressions. Graph Models Image Process 56(2):161–172CrossRefGoogle Scholar
  163. 163.
    Arad N, Reisfeld D (1995) Image warping using few anchor points and radial functions. Comput Graph Forum 14, no.1:35–46CrossRefGoogle Scholar
  164. 164.
    Ruprecht D, Muller H (1993) Free form deformation with scattered data interpolation methods. In: Hagen H, Noltemeier H, Farin G (eds) Geometric modelling (computing supplementum 8). Springer Verlag, Wien, Austria, pp 267–281Google Scholar
  165. 165.
    Goshtasby A, O’Neill WD (1993) Surface fitting to scattered data by a sum of Gaussians. Comput Aided Geomet Des 10(2):143–156CrossRefGoogle Scholar
  166. 166.
    Schagen IP (1980) The use of stochastic processes in interpolation and approximation. Int J Comput Math 8:63–76, Section BCrossRefGoogle Scholar
  167. 167.
    Franke R (1982) Scattered data interpolation: tests of some methods. J Math Comput 38(157):181–200Google Scholar
  168. 168.
    Powell MJD (1987) Radial basis functions for multivariate interpolation: a review. In: Cox MG, Mason JC (eds) Algorithms for approximation. Clarendon Press, Oxford, UK, pp 143–167Google Scholar
  169. 169.
    Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396CrossRefGoogle Scholar
  170. 170.
    Fornefett M, Rohr K, Stiehl HS (1999) Elastic registration of medical images using radial basis functions with compact support. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR’99), Fort Collins, CO, June 1999, vol 1. pp 402–407Google Scholar
  171. 171.
    Fornefett M, Rohr K, Stiehl HS (2001) Radial basis functions with compact support for elastic registration of medical images. Image Vis Comput 19(1–2):87–96CrossRefGoogle Scholar
  172. 172.
    El-Baz A, Farag A, Yuksel S, Abou El-Ghar M, Eldiasty T, Ghoneim M (2007) Application of deformable models for the detection of acute renal rejection. In: Suri JS, Farag A (eds) Handbook of parametric and geometric deformable models: biomedical and clinical applications, vol. II. Springer, New York, pp 293–333, Chapter 10Google Scholar
  173. 173.
    Khalifa F, El-Baz A, Gimel’farb G, Abu El-Ghar M (2010) Non-invasive image-based approach for early detection of acute renal rejection. In: T Jiang et al. (eds): MICCAI 2010, Part I, LNCS 6361, Springer-Verlag, Berlin pp 10–18Google Scholar
  174. 174.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313Google Scholar
  175. 175.
    Brent RP (1973) Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  176. 176.
    Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168Google Scholar
  177. 177.
    Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24(111):647–656Google Scholar
  178. 178.
    Bernon JL, Boudousq V, Rohmer JF, Fourcade M, Zanca M, Rossi M, Goulart DM (2001) A comparative study of Powell’s and Downhill Simplex algorithms for a fast multimodal surface matching in brain imaging. Comput Med Imaging Graph 25(4):287–297PubMedCrossRefGoogle Scholar
  179. 179.
    Pluim JPW, Maintz JBA, Viergever MA (2001) Mutual information matching in multiresolution contexts. Image Vis Comput 19(1–2):45–52CrossRefGoogle Scholar
  180. 180.
    Jenkinson M, Smith S (2001) A global optimization method for robust affine registration of brain images. Med Image Anal 5(2):143–156PubMedCrossRefGoogle Scholar
  181. 181.
    Maes F, Vandermeulen D, Suetens P (1999) Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Med Image Anal 3(4):373–386PubMedCrossRefGoogle Scholar
  182. 182.
    Rohlfing T, Maurer CR Jr, Bluemke DA, Jacobs MA (2003) Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Trans Med Imaging 22(6):730–741PubMedCrossRefGoogle Scholar
  183. 183.
    Staring M, Klein S, Pluim JPW (2007) A rigidity penalty term for nonrigid registration. Med Phys 34(11):4098–4108PubMedCrossRefGoogle Scholar
  184. 184.
    Michalewicz Z (1999) Genetic algorithms + data Structures = evolution programs, 3rd edn. Springer, New YorkGoogle Scholar
  185. 185.
    MP Wachowiak, AS Elmaghraby (2001) The continuous Tabu search as an optimizer for 2-D-to-3-D biomedical image registration. In: W Niessen, M Viergever (eds) Lecture notes in computer science, Springer-Verlag, New York, Proc. MICCAI 2001, pp 1273–1274Google Scholar
  186. 186.
    Klein S, Staring M, Pluim JPW (2007) Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Trans Image Process 16(12):2879–2890PubMedCrossRefGoogle Scholar
  187. 187.
    Thévenaz P, Ruttimann UE, Unser M (1995) Iterative multiscale registration without landmarks. In: Proceedings of the IEEE international conference on image processing (ICIP’95), Washington, DC, October 1995, vol 3. pp 228–231Google Scholar
  188. 188.
    Wolberg G, Zokai S (2000) Image registration for perspective deformation recovery. In: Proceedings of the SPIE 14th annual international symposium aerospace, defense sensing, simulation, and controls, Orlando, FL, April 2000, pp 259–270Google Scholar
  189. 189.
    Starink JPP, Baker E (1995) Finding point correspondence using simulated annealing. Pattern Recognit 28(2):231–240CrossRefGoogle Scholar
  190. 190.
    Jacq J, Roux C (1995) Registration of non-segmented images using a genetic algorithm. In: Proceedings of the 1st international conference on computer vision, virtual reality and robotics in medicine, April 1995, pp 205–211Google Scholar
  191. 191.
    Thévenaz P, Blu T, Unser M (2000) Image interpolation and resampling. In: Bankman IN (ed) Handbook of medical imaging, processing, and analysis. Academic, San Diego, pp 393–420CrossRefGoogle Scholar
  192. 192.
    Unser M (1999) Splines: A perfect fit for signal and image processing. IEEE Signal Process Mag 16(6):22–38CrossRefGoogle Scholar
  193. 193.
    Hou HS, Andrews HC (1978) Cubic splines for image interpolation and digital filtering. IEEE Trans Acoust Speech Signal Process 26(6):508–517Google Scholar
  194. 194.
    Unser M, Aldroubi A, Eden M (1993) B-spline signal processing. Part I :theory. IEEE Trans Signal Process 41(2):821–832CrossRefGoogle Scholar
  195. 195.
    Hajnal JB, Saeed N, Soar EJ, Oatridge A, Young IR, Bydder GM (1995) A registration and interpolation procedure for subvoxel matching of serially acquired MR images. J Comput Assist Tomogr 19(2):289–296PubMedCrossRefGoogle Scholar
  196. 196.
    Thacker NA, Jackson A, Moriarty D, Vokurka E (1999) Improved quality of re-sliced MR images using re-normalized sinc interpolation. J Magn Reson Imaging 10(4):582–588PubMedCrossRefGoogle Scholar
  197. 197.
    Goshtasby AA (2005) 2-D and 3-D image registration for medical, remote sensing, and industrial applications. Wiley, New YorkGoogle Scholar
  198. 198.
    Appledorn CR (1996) A new approach to the interpolation of sampled data. IEEE Trans Med Imag 15(3):369–376CrossRefGoogle Scholar
  199. 199.
    Dyn N, Levin D, Rippa S (1986) Numerical procedures for global surface fitting of scattered data by radial functions. SIAM J Sci Stat Comput 7:639–659CrossRefGoogle Scholar
  200. 200.
    Roche A, Malandain G, Ayache N (2000) Unifying maximum likelihood approaches in medical image registration. Int J Imaging Sys Technol 11(1):71–80CrossRefGoogle Scholar
  201. 201.
    Likar B, Pernus F (2001) A hierarchical approach to elastic registration based on mutual information. Image Vis Comput 19(1–2):33–44CrossRefGoogle Scholar
  202. 202.
    Musse O, Heitz F, Armspach J (2001) Topology preserving deformable image matching using constrained hierarchical parametric models. IEEE Trans Image Process 10(7):1081–1093PubMedCrossRefGoogle Scholar
  203. 203.
    Cain SC, Hayat MM, Armstrong EE (2001) Projection-based image registration in the presence of fixed-pattern noise. IEEE Trans Image Process 10(12):1860–1872PubMedCrossRefGoogle Scholar
  204. 204.
    Kaneko S, Murase I, Igarashi S (2002) Robust image registration by increment sign correlation. Pattern Recognit 35(10):2223–2234CrossRefGoogle Scholar
  205. 205.
    Kaneko S, Satoh Y, Igarashi S (2003) Using selective correlation coefficient for robust image registration. Pattern Recognit 36(5):1165–1173CrossRefGoogle Scholar
  206. 206.
    Liu J, Vemuri BC, Marroquin JL (2002) Local frequency representations for robust multimodal image registration. IEEE Trans Med Imaging 21(5):462–469PubMedCrossRefGoogle Scholar
  207. 207.
    Liu J, Vemuri BC, Bova F (2000) Multi-modal image registration using local frequency. In: Proceedings of the 5th IEEE Workshop Application Computer Vision, Palm Springs, CA, December 2000, pp 120–125Google Scholar
  208. 208.
    Elbakary M, Sundareshan MK (2005) Accurate representation of local frequency using a computationally efficient Gabor filter fusion approach with application to image registration. Pattern Recognit Lett 26(14):2164–2173CrossRefGoogle Scholar
  209. 209.
    Vemuri BC, Ye J, Chen Y, Leonard CM (2003) Image registration via level-set motion: applications to atlas-based segmentation. Med Image Anal 7(1):1–20PubMedCrossRefGoogle Scholar
  210. 210.
    Bertalmio M, Sapiro G, Randall G (2000) Morphing active contours. IEEE Trans Pattern Anal Mach Intell 22(7):733–736CrossRefGoogle Scholar
  211. 211.
    Duay V, Houhou N, Thiran JP (2005) Atlas-based segmentation of medical images locally constrained by level sets. In: Proceedings of the IEEE international conference on image processing (ICIP’05), September 2005, vol 2. pp 1286–1289Google Scholar
  212. 212.
    Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed – algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49CrossRefGoogle Scholar
  213. 213.
    Noblet V, Heinrich C, Heitz F, Armspach JP (2005) 3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization. IEEE Trans Image Process 14(5):553–556PubMedCrossRefGoogle Scholar
  214. 214.
    Jaulin L, Kieffer M, Didrit O, Walter E (2001) Applied interval analysis. Springer, New YorkGoogle Scholar
  215. 215.
    Thévenaz P, Unser M (2000) Optimization of mutual information for multiresolution image registration. IEEE Trans Image Process 9(12):2083–2099PubMedGoogle Scholar
  216. 216.
    Kybic J, Unser M (2003) Fast parametric elastic image registration. IEEE Trans Image Process 12(11):1427–1442PubMedCrossRefGoogle Scholar
  217. 217.
    Penney G, Batchelor P, Hill D, Hawkes D (2001) Validation of a two- to three-dimensional registration algorithm for aligning preoperative CT images and intraoperative fluoroscopy images. Med Phys 28(6):1024–1032PubMedCrossRefGoogle Scholar
  218. 218.
    Hipwell JH, Penney GP, McLaughlin RA, Rhode K, Summers P, Cox TC, Byrne JV, Noble JA, Hawkes DJ (2003) Intensity-based 2-D–3-D registration of cerebral angiograms. IEEE Trans Med Imaging 22(11):1417–1426PubMedCrossRefGoogle Scholar
  219. 219.
    Byrne J, Colominas C, Hipwell J, Cox T, Noble JA, Penney GP, Hawkes DJ (2004) Assessment of a technique for 2-D-3-D registration of cerebral intra-arterial angiography. Br J Radiol 77(914):123–128PubMedCrossRefGoogle Scholar
  220. 220.
    Sabuncu MR, Ramadge PJ (2003) Spatial information in entropy-based image registration. In: Proceedings of the International Workshop Biomedical Image Registration, Philadelphia, PA, July 2003 (Lecture notes in computer science), vol 2717/2003. Springer, Berlin, pp 132–141Google Scholar
  221. 221.
    Markelj P, Tomazevic D, Likar B, Pernus F (2010) A review of 3-D/2-D registration methods for image-guided interventions. Med Image Anal. http://www.medicalimageanalysisjouranl.com/articles/S1361-8415(10)00036-8/abstract
  222. 222.
    Xie Z, Farin GE (2004) Image registration using hierarchical B-splines. IEEE Trans Vis Comput Graph 10(1):85–94PubMedGoogle Scholar
  223. 223.
    Mora M, Tauber C, Batatia H (2006) 2-D local heart motion estimation using level sets and hierarchical B-splines. In: Proceedings of the 33rd international annual conference on computers in cardiology, Valencia, Spain, September 2006, pp 513–516Google Scholar
  224. 224.
    Tustison NJ, Avants BA, Gee JC (2007) Improved FFD B-spline image registration. In: Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV’07), Rio de Janeiro, Brazil, October 2007, pp 1–8Google Scholar
  225. 225.
    Tustison NJ, Avants BB, Gee JC (2009) Directly manipulated free-form deformation image registration. IEEE Trans Image Process 18(3):624–635PubMedCrossRefGoogle Scholar
  226. 226.
    Matsopoulos GK, Asvestas PA, Mouravliansky NA, Delibasis KK (2004) Multimodal registration of retinal images using self organizing maps. IEEE Trans Med Imaging 23(12):1557–1573PubMedCrossRefGoogle Scholar
  227. 227.
    Kim J, Fessler JA (2004) Intensity-based image registration using robust correlation coefficients. IEEE Trans Med Imaging 23(11):1430–1444PubMedCrossRefGoogle Scholar
  228. 228.
    Wachowiak MP, Peters TM (2006) High-performance medical image registration using new optimization techniques. IEEE Trans Inf Technol Biomed 10(2):334–353Google Scholar
  229. 229.
    Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157–181CrossRefGoogle Scholar
  230. 230.
    Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct search: New perspectives on some classical and modern methods. SIAM Rev 45(3):385–482CrossRefGoogle Scholar
  231. 231.
    Torczon V (1991) On the convergence of the multidirectional search algorithm. SIAM J Optim 1:123–145CrossRefGoogle Scholar
  232. 232.
    Lee S, Choi M, Kim H, Park FC (2007) Geometric direct search algorithms for image registration. IEEE Trans Image Process 16(9):2215–2224PubMedCrossRefGoogle Scholar
  233. 233.
    Orchard J (2007) Efficient least squares multimodal registration with a globally exhaustive alignment search. IEEE Trans Image Process 16(10):2526–2534PubMedCrossRefGoogle Scholar
  234. 234.
    Sdika M (2008) A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization. IEEE Trans Med Imaging 27(2):271–281PubMedCrossRefGoogle Scholar
  235. 235.
    Glocker B, Komodakis N, Tziritas G, Navab N, Paragios N (2008) Dense image registration through MRFs and efficient linear programming. Med Image Anal 12(6):731–741PubMedCrossRefGoogle Scholar
  236. 236.
    Slomka PJ, Mandel J, Downey D, Fenster A (2001) Evaluation of voxel-based registration of 3-d power Doppler ultrasound and 3-d magnetic resonance angiographic images of carotid arteries. Ultrasound Med Biol 27(7):945–955PubMedCrossRefGoogle Scholar
  237. 237.
    Fei B, Zhang S, Savado O, Suri J, Lewin JS, Wilson DL. Three-dimensional automatic volume registration of carotid MR images. In: Proceedings of the 25th annual IEEE engineering in medicine biology society international conference, September 2003, vol 1, pp 646–648Google Scholar
  238. 238.
    Chan RC, Sokka S, Hinton D, Houser S, Manzke R, Hanekamp A, Reddy VY, Kaazempur-Mofrad MR, Rasche V (2006) Non-rigid registration for fusion of carotid vascular ultrasound and MRI volumetric datasets. Proc SPIE Med Imaging Image Process 6144(2):61442E.1–61442E.8Google Scholar
  239. 239.
    Krucker JF, LeCarpentier GL, Fowlkes JB, Carson PL (2002) Rapid elastic image registration for 3-D ultrasound. IEEE Trans Med Imaging 21(11):1384–1394PubMedCrossRefGoogle Scholar
  240. 240.
    Nanayakkara ND, Chiu B, Samani A, Spence JD, Samarabandu J, Fenster A (2008) A twisting and bending model-based nonrigid image registration technique for 3-D ultrasound carotid images. IEEE Trans Med Imaging 27(10):1378–1388PubMedCrossRefGoogle Scholar
  241. 241.
    Sabuncu MR, Ramadge P (2008) Using spanning graphs for efficient image registration. IEEE Trans Image Process 17(5):788–797PubMedCrossRefGoogle Scholar
  242. 242.
    Staring M, van der Heide UA, Klein S, Viergever MA, Pluim JPW (2009) Registration of cervical MRI using multifeature mutual information. IEEE Trans Med Imaging 28(9):1412–1421PubMedCrossRefGoogle Scholar
  243. 243.
    Klein S, Pluim JPW, Staring M, Viergever MA (2009) Adaptive stochastic gradient descent optimization for image registration. Int J Comput Vis 81(3):227–239CrossRefGoogle Scholar
  244. 244.
    Loeckx D, Slagmolen P, Maes F, Vandermeulen D, Suetens P (2010) Nonrigid image registration using conditional mutual information. IEEE Trans Med Imaging 29(1):19–29PubMedCrossRefGoogle Scholar
  245. 245.
    Studholme C, Drapaca C, Iordanova B, Cardenas V (2006) Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change. IEEE Trans Med Imaging 25(5):626–639PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Fahmi Khalifa
  • Garth M. Beache
  • Georgy Gimel’farb
  • Jasjit S. Suri
  • Ayman S. El-Baz
    • 1
    Email author
  1. 1.BioImaging Laboratory, Department of BioengineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations