Density and Attachment Agnostic CT Pulmonary Nodule Segmentation with Competition-Diffusion and New Morphological Operators

  • Toshiro KubotaEmail author
  • Anna K. Jerebko
  • Maneesh Dewan
  • Marcos Salganicoff
  • Arun Krishnan


Pulmonary nodules are potential manifestations of lung cancer, and their detection and inspection are essential for screening and diagnosis of the disease. The growth of a nodule is considered one of the most important cues for assessing its malignancy. Hence, the ability to segment the nodules accurately and measure their growth over time is crucial for prognosis. Accurate nodule segmentation is also vital for drug therapy development. A segmentation that can provide a consistent, reproducible, and accurate volumetric measure of nodule shrinkage/growth is very critical for evaluating the effectiveness of drug treatments


Segmentation Algorithm Pulmonary Nodule Medial Axis Manual Segmentation Seed Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ko JP, Naidich DP (2004) Computer-aided diagnosis and the evaluation of lung disease. J Thorac Imaging 19 no. 3:136–155CrossRefGoogle Scholar
  2. 2.
    Mulshine JL, Baer TB (eds) (2008) Quantitative imaging tools for lung cancer drug assessment. WileyGoogle Scholar
  3. 3.
    Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC (eds) (2004) World Health Organization classification of tumors. Pathology and genetics of tumors of the lung pleura, thymus and heart. IARC Press, LyonGoogle Scholar
  4. 4.
    Gandara DR, Aberle D, Lau D, Jett J, Akhurst T, Heelan R, Mulshine J, Berg C, Patz EF Jr (2006) Radiographic imaging of bronchioloalveolar carcinoma: screening, patterns of presentation and response assessment. J Thorac Oncol 1:S20–26PubMedCrossRefGoogle Scholar
  5. 5.
    Noguchi M, Morikawa A, Kawasaki M, Matsumoto Y, Yamada T, Hirohashi S, Kondo H, Shimosato Y (1995) Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer 75:2844–2852PubMedCrossRefGoogle Scholar
  6. 6.
    Godoy MCB, Nadich DP (2009) Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management. Radiology 253:606–622PubMedCrossRefGoogle Scholar
  7. 7.
    Kubota T, Jerebko A, Salganicoff M, Dewan M, Krishnan A (2008) Robust segmentation of pulmonary nodules of various densities: from ground-glass opacities to solid nodules. In: Proceedings of the first international work-shop on pulmonary image analysis, pp 253–262Google Scholar
  8. 8.
    Kostis W, Reeves A, Yankelevitz D, Henschke C (2003) Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Trans Med Imaging 22(10):1259–1274PubMedCrossRefGoogle Scholar
  9. 9.
    Kuhnigk J, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S, Peitgen H (2006) Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic ct scans. IEEE Trans Med Imaging 25(4):417–434PubMedCrossRefGoogle Scholar
  10. 10.
    de Hoop B, Gietema H, van Ginneken B, Zanen P, Groenewegen G, Prokop M (2009) A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: what is the minimum increase in size to detect growth in repeated CT examinations. Eur Radiol 19:800–808PubMedCrossRefGoogle Scholar
  11. 11.
    Henschke C, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS (2002) CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol 178:1053–1057PubMedGoogle Scholar
  12. 12.
    Kauczor HU, Heitmann K, Heussel CP, Marwede D, Uthmann T, Thelen M (2000) Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask. AJR Am J Roentgenol 175:1329–1334PubMedGoogle Scholar
  13. 13.
    van Ginneken B (2006) Supervised probabilistic segmentation of pulmonary nodules in CT scans. In: MICCAI, pp 912–919Google Scholar
  14. 14.
    Wang J, Engelmann R, Li Q (2007) Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique. Med Phys 34(1):4678–89PubMedCrossRefGoogle Scholar
  15. 15.
    Reeves A, Chan A, Yankelevitz D, Henschke C, Kressler B, Kostis W (2006) On measuring the change in size of pulmonary nodules. IEEE Trans Med Imaging 25 no. 4:435–450CrossRefGoogle Scholar
  16. 16.
    Okada K, Comaniciu D, Krishnan A (2005) Robust anisotropic Gaussian fitting for volumetric characterization of pulmonary nodules in multislice CT. IEEE Trans Med Imaging 24(3):409–423PubMedCrossRefGoogle Scholar
  17. 17.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619CrossRefGoogle Scholar
  18. 18.
    Okada K, Akdemir U, Krishnan A (2005) Blob segmentation using joint space-intensity likelihood ratio test: application to 3D tumor segmentation. In: IEEE computer vision and pattern recognition, vol II, pp 437–444Google Scholar
  19. 19.
    Dehmeshki J, Amin H, Valdivieso M, Ye X (2008) Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging 27(4):467–480PubMedCrossRefGoogle Scholar
  20. 20.
    Lee Y, Hara T, Fujita H, Itoh S, Ishigaki T (2001) Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imaging 20:595–604PubMedCrossRefGoogle Scholar
  21. 21.
    Li Q, Doi K (2004) New selective nodule enhancement filter and its application for significant improvement of nodule detection on computed tomography. Proc SPIE 5370:1–9CrossRefGoogle Scholar
  22. 22.
    Ikeda K, Awai K, Mori T, Kawanaka K, Yamashita Y, Nomori H (2007) Differential diagnosis of ground glass opacity nodules. Chest 132(3):984–990PubMedCrossRefGoogle Scholar
  23. 23.
    Kubota T, Espinal F (2000) Reaction-diffusion systems for hypothesis propagation. In: International conference on pattern recognition, vol III, pp 547–550Google Scholar
  24. 24.
    Kubota T, Okada K (2005) Estimating diameters of pulmonary nodules with competition-diffusion and robust ellipsoid fit. In: Computer vision for biomedical image applications, pp 324–334Google Scholar
  25. 25.
    Hofbauer J, Sigmund K (2002) Evolutionary games and population dynamics. Cambridge University Press, Cambridge, UKGoogle Scholar
  26. 26.
    Smoller J (1994) Shock waves and reaction-diffusion equations. SpringerGoogle Scholar
  27. 27.
    National Cancer Institute (2005) LIDC: datasets as a public resource.
  28. 28.
    Tachibana R, Kido S (2006) Automatic segmentation of pulmonary nodules on CT images by use of NCI lung image database consortium. Proc SPIE 6144:1–9Google Scholar
  29. 29.
    Way TW, Hadjiiski LM, Sahiner B, Chan HP, Cascade PN, Kazerooni EA, Bogot N, Zhou C (2006) Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Med Phys 33(7):2323–2337PubMedCrossRefGoogle Scholar
  30. 30.
    McNitt-Gray M, III SA, Meyer C, Reeves A, McLennan G, Pais R, Freymann J, Brown M, Engelmann R, Bland P (2007) The lung image database consortium (LIDC) data collection process for nodule detection and annotation. Acad Radiol 14(12):1464–1474PubMedCrossRefGoogle Scholar
  31. 31.
    Ravenel JG, Leue WM, Nietert PJ, Miller JV, Taylor KK, Silvestri GA (2008) Pulmonary nodule volume: Effects of reconstruction parameters on automated measurements – a phantom study. Radiology 247:400–408PubMedGoogle Scholar
  32. 32.
    Suzuki K, Kusumoto M, Watanabe S, Tsuchiya R, Asamura H (2006) Radiologic classification of small adenocarcinoma of the lung: radiologic-pathologic correlation and its prognostic impact. Ann Thorac Surg 81:413–4PubMedCrossRefGoogle Scholar
  33. 33.
    Henschke C (Dec 2007) International early lung cancer action program: protocol [Online].
  34. 34.
    Bogot N, Kazerooni E, Kelly A, Quint L, Desjardin B, Nan B (2005) Inter-observer and intra-observer variability in the assessment of pulmonary nodule size on CT using film and computer display methods. Acad Radiol 12:948–956PubMedCrossRefGoogle Scholar
  35. 35.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310PubMedCrossRefGoogle Scholar
  36. 36.
    de Berg M, Cheong O, van Kreveld M, Overmars M (1997) Computer geometry: algorithms and applications, 1st edn. SpringerGoogle Scholar
  37. 37.
    Raykar VC, Shipeng Y, Zhao LH, Valadez GH, Florin C, Bogoni L, Moy L (2010) Learning from crowds. J Mach Learn Res 11:1297–1322Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Toshiro Kubota
    • 1
    Email author
  • Anna K. Jerebko
  • Maneesh Dewan
  • Marcos Salganicoff
  • Arun Krishnan
  1. 1.Department of Mathematical SciencesSusquehanna UniversitySelinsgroveUSA

Personalised recommendations