Skip to main content

Computerized Segmentation of Organs by Means of Geodesic Active-Contour Level-Set Algorithm

  • Chapter
  • First Online:
Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies

Abstract

Our purpose in this study was to develop a computerized liver extraction scheme based on a geodesic active contour segmentation technique coupled with level-set algorithms for measuring liver volumes in hepatic CT. We evaluated our scheme on 18 prospective liver donors under a liver transplant protocol with a multidetector CT system, and we compared our computerized volumetry with “gold-standard” manual volumetry and interactive volumetry based on commercially available volumetry-assist software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not use the terms “slice thickness” or “collimation,” because they do not always equal a reconstruction interval (or distance between slices).

References

  1. U.S. OPTN and SRTR, Transplant Data 1998–2007, 2008

    Google Scholar 

  2. Lo CM, Fan ST, Liu CL, Wei WI, Lo RJ et al (1997) Adult-to-adult living donor liver transplantation using extended right lobe grafts. Ann Surg 226(3):261–269, discussion 269–270

    Article  PubMed  CAS  Google Scholar 

  3. Kamel IR, Kruskal JB, Warmbrand G, Goldberg SN, Pomfret EA et al (2001) Accuracy of volumetric measurements after virtual right hepatectomy in potential donors undergoing living adult liver transplantation. AJR Am J Roentgenol 176(2):483–487

    PubMed  CAS  Google Scholar 

  4. Lemke AJ, Brinkmann MJ, Schott T, Niehues SM, Settmacher U et al (2006) Living donor right liver lobes: preoperative CT volumetric measurement for calculation of intraoperative weight and volume. Radiology 240(3):736–742

    Article  PubMed  Google Scholar 

  5. Emiroglu R, Coskun M, Yilmaz U, Sevmis S, Ozcay F et al (2006) Safety of multidetector computed tomography in calculating liver volume for living-donor liver transplantation. Transplant Proc 38(10):3576–3578

    Article  PubMed  CAS  Google Scholar 

  6. Radtke A, Sotiropoulos GC, Nadalin S, Molmenti EP, Schroeder T et al (2007) Preoperative volume prediction in adult living donor liver transplantation: how much can we rely on it? Am J Transplant 7(3):672–679

    Article  PubMed  CAS  Google Scholar 

  7. Nakayama Y, Li Q, Katsuragawa S, Ikeda R, Hiai Y et al (2006) Automated hepatic volumetry for living related liver transplantation at multisection CT. Radiology 240(3):743–748

    Article  PubMed  Google Scholar 

  8. Bae KT, Giger ML, Chen CT, Kahn CE Jr (1993) Automatic segmentation of liver structure in CT images. Med Phys 20(1):71–78

    Article  PubMed  CAS  Google Scholar 

  9. Gao L, Heath DG, Kuszyk BS, Fishman EK (1996) Automatic liver segmentation technique for three-dimensional visualization of CT data. Radiology 201(2):359–364

    PubMed  CAS  Google Scholar 

  10. Selver MA, Kocaoglu A, Demir GK, Dogan H, Dicle O et al (2008) Patient oriented and robust automatic liver segmentation for pre-evaluation of liver transplantation. Comput Biol Med 38(7):765–784

    Article  PubMed  Google Scholar 

  11. Okada T, Shimada R, Hori M, Nakamoto M, Chen YW et al (2008) Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model. Acad Radiol 15(11):1390–1403

    Article  PubMed  Google Scholar 

  12. Chang HH, Valentino DJ (2008) An electrostatic deformable model for medical image segmentation. Comput Med Imaging Graph 32(1):22–35

    Article  PubMed  Google Scholar 

  13. Boscolo R, Brown MS, McNitt-Gray MF (2002) Medical image segmentation with knowledge-guided robust active contours. Radiographics 22(2):437–448

    PubMed  Google Scholar 

  14. Yuan Y, Giger ML, Li H, Suzuki K, Sennett C (2007) A dual-stage method for lesion segmentation on digital mammograms. Med Phys 34(11):4180–4193

    Article  PubMed  Google Scholar 

  15. Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. Int J Comput Vis 22:61–79

    Article  Google Scholar 

  16. Sethian JA (1999) Level set methods and fast marching methods, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  17. Perona P, Malik J (1990) Scale-Space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  18. Whitaker RT, Xue X (2001) Variable-conductance, level-set curvature for image denoising. In: Proceeding of the IEEE International Conference on Image Processing, Thessaloniki, Greece, pp 142–145

    Google Scholar 

  19. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci U S A 93(4):1591–1595

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki K, Horiba I, Sugie N (2003) Linear-time connected-component labeling based on sequential local operations. Comput Vis Image Underst 89(1):1–23

    Article  Google Scholar 

  21. He L, Chao Y, Suzuki K, Wu K (2009) Fast connected-component labeling. Pattern Recognit 42:1977–1987

    Article  Google Scholar 

  22. He L, Chao Y, Suzuki K (2008) A run-based two-scan labeling algorithm. IEEE Trans Image Process 17(5):749–756

    Article  PubMed  Google Scholar 

  23. Portney LG, Watkins MP (1993) Foundations of clinical research. Applications and practice. Appleton & Lange, Norwalk, CT

    Google Scholar 

  24. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  PubMed  CAS  Google Scholar 

  25. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  PubMed  CAS  Google Scholar 

  26. Sandrasegaran K, Kwo PW, DiGirolamo D, Stockberger SM Jr, Cummings OW et al (1999) Measurement of liver volume using spiral CT and the curved line and cubic spline algorithms: reproducibility and interobserver variation. Abdom Imaging 24(1):61–65

    Article  PubMed  CAS  Google Scholar 

  27. Doi K (2005) Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol 78(1):S3–S19

    Article  PubMed  Google Scholar 

  28. Giger ML (2005) Update on the potential role of CAD in radiologic interpretations: are we making progress? Acad Radiol 12(6):669–670

    Article  PubMed  Google Scholar 

  29. Giger ML, Suzuki K (2007) Computer-aided diagnosis (CAD). In: Feng DD (ed) Biomedical information technology. Academic, Cambridge, MA, pp 359–374

    Google Scholar 

  30. Oda S, Awai K, Suzuki K, Yanaga Y, Funama Y et al (2009) Performance of radiologists in detection of small pulmonary nodules on chest radiographs: effect of rib suppression with a massive-training artificial neural network. AJR Am J Roentgenol 193(5):W397–W402

    Article  PubMed  Google Scholar 

  31. Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K (2006) Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med Phys 33(7):2642–2653

    Article  PubMed  Google Scholar 

  32. Suzuki K, Abe H, MacMahon H, Doi K (2006) Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging 25(4):406–416

    Article  PubMed  Google Scholar 

  33. Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K (2005) False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol 12(2):191–201

    Article  PubMed  Google Scholar 

  34. Suzuki K (2009) A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol 54(18):S31–S45

    Article  PubMed  Google Scholar 

  35. Li Q, Li F, Suzuki K, Shiraishi J, Abe H et al (2005) Computer-aided diagnosis in thoracic CT. Semin Ultrasound CT MR 26(5):357–363

    Article  PubMed  Google Scholar 

  36. Li F, Arimura H, Suzuki K, Shiraishi J, Li Q et al (2005) Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology 237(2):684–690

    Article  PubMed  Google Scholar 

  37. Suzuki K, Doi K (2005) How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Acad Radiol 12(10):1333–1341

    Article  PubMed  Google Scholar 

  38. Suzuki K, Li F, Sone S, Doi K (2005) Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24(9):1138–1150

    Article  PubMed  Google Scholar 

  39. Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J et al (2004) Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol 11(6):617–629

    Article  PubMed  Google Scholar 

  40. Li F, Aoyama M, Shiraishi J, Abe H, Li Q et al (2004) Radiologists’ performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. AJR Am J Roentgenol 183(5):1209–1215

    PubMed  Google Scholar 

  41. Suzuki K, Armato SG 3rd, Li F, Sone S, Doi K (2003) Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys 30(7):1602–1617

    Article  PubMed  Google Scholar 

  42. Uchiyama Y, Katsuragawa S, Abe H, Shiraishi J, Li F et al (2003) Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med Phys 30(9):2440–2454

    Article  PubMed  Google Scholar 

  43. King M, Giger ML, Suzuki K, Pan X (2007) Feature-based characterization of motion-contaminated calcified plaques in cardiac multidetector CT. Med Phys 34(12):4860–4875

    Article  PubMed  Google Scholar 

  44. King M, Giger ML, Suzuki K, Bardo DM, Greenberg B et al (2007) Computerized assessment of motion-contaminated calcified plaques in cardiac multidetector CT. Med Phys 34(12):4876–4889

    Article  PubMed  Google Scholar 

  45. Suzuki K, Horiba I, Sugie N, Nanki M (2004) Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans Med Imaging 23(3):330–339

    Article  PubMed  Google Scholar 

  46. Suzuki K, Rockey DC, Dachman AH (2010) CT colonography: Computer-aided detection of false-negative polyps in a multicenter clinical trial. Med Phys 30:2–21

    Google Scholar 

  47. Lostumbo A, Suzuki K, Dachman AH (2010) Flat lesions in CT colonography. Abdom Imaging 35:578–583

    Article  PubMed  Google Scholar 

  48. Suzuki K, Yoshida H, Nappi J, Armato SG 3rd, Dachman AH (2008) Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Med Phys 35(2):694–703

    Article  PubMed  Google Scholar 

  49. Doshi T, Rusinak D, Halvorsen RA, Rockey DC, Suzuki K et al (2007) CT colonography: false-negative interpretations. Radiology 244(1):165–173

    Article  PubMed  Google Scholar 

  50. Suzuki K, Yoshida H, Nappi J, Dachman AH (2006) Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes. Med Phys 33(10):3814–3824

    Article  PubMed  Google Scholar 

  51. Okamoto E, Kyo A, Yamanaka N, Tanaka N, Kuwata K (1984) Prediction of the safe limits of hepatectomy by combined volumetric and functional measurements in patients with impaired hepatic function. Surgery 95(5):586–592

    PubMed  CAS  Google Scholar 

  52. Yamanaka J, Saito S, Fujimoto J (2007) Impact of preoperative planning using virtual segmental volumetry on liver resection for hepatocellular carcinoma. World J Surg 31(6):1249–1255

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to Ms. E.F. Lanzl for improving the manuscript and to Ryan Kohlbrenner, B.S., Mark L. Epstein, M.S., Ademola M. Obajuluwa, B.S., Jianwu Xu, Ph.D., Masatoshi Hori, M.D., Ph.D., Shailesh Garg, M.D., Aytekin Oto, M.D., and Richard Baron, M.D., for their valuable suggestions and contributions to this study. The author is also grateful to Harumi Suzuki for her help with figures and graphs, and Mineru Suzuki and Juno Suzuki for cheering him up. This work was supported partially by NIH S10 RR021039 and P30 CA14599. Some implementations used the Insight Segmentation and Registration Toolkit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suzuki, K. (2011). Computerized Segmentation of Organs by Means of Geodesic Active-Contour Level-Set Algorithm. In: El-Baz, A., Acharya U, R., Mirmehdi, M., Suri, J. (eds) Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8195-0_4

Download citation

Publish with us

Policies and ethics