Advertisement

Computerized Segmentation of Organs by Means of Geodesic Active-Contour Level-Set Algorithm

  • Kenji SuzukiEmail author
Chapter

Abstract

Our purpose in this study was to develop a computerized liver extraction scheme based on a geodesic active contour segmentation technique coupled with level-set algorithms for measuring liver volumes in hepatic CT. We evaluated our scheme on 18 prospective liver donors under a liver transplant protocol with a multidetector CT system, and we compared our computerized volumetry with “gold-standard” manual volumetry and interactive volumetry based on commercially available volumetry-assist software.

Keywords

Active-contour model Active shape model Fast marching Liver volumetry CT liver Hepatic CT Liver transplantation Computer-aided diagnosis 

Notes

Acknowledgments

The author is grateful to Ms. E.F. Lanzl for improving the manuscript and to Ryan Kohlbrenner, B.S., Mark L. Epstein, M.S., Ademola M. Obajuluwa, B.S., Jianwu Xu, Ph.D., Masatoshi Hori, M.D., Ph.D., Shailesh Garg, M.D., Aytekin Oto, M.D., and Richard Baron, M.D., for their valuable suggestions and contributions to this study. The author is also grateful to Harumi Suzuki for her help with figures and graphs, and Mineru Suzuki and Juno Suzuki for cheering him up. This work was supported partially by NIH S10 RR021039 and P30 CA14599. Some implementations used the Insight Segmentation and Registration Toolkit.

References

  1. 1.
    U.S. OPTN and SRTR, Transplant Data 1998–2007, 2008Google Scholar
  2. 2.
    Lo CM, Fan ST, Liu CL, Wei WI, Lo RJ et al (1997) Adult-to-adult living donor liver transplantation using extended right lobe grafts. Ann Surg 226(3):261–269, discussion 269–270PubMedCrossRefGoogle Scholar
  3. 3.
    Kamel IR, Kruskal JB, Warmbrand G, Goldberg SN, Pomfret EA et al (2001) Accuracy of volumetric measurements after virtual right hepatectomy in potential donors undergoing living adult liver transplantation. AJR Am J Roentgenol 176(2):483–487PubMedGoogle Scholar
  4. 4.
    Lemke AJ, Brinkmann MJ, Schott T, Niehues SM, Settmacher U et al (2006) Living donor right liver lobes: preoperative CT volumetric measurement for calculation of intraoperative weight and volume. Radiology 240(3):736–742PubMedCrossRefGoogle Scholar
  5. 5.
    Emiroglu R, Coskun M, Yilmaz U, Sevmis S, Ozcay F et al (2006) Safety of multidetector computed tomography in calculating liver volume for living-donor liver transplantation. Transplant Proc 38(10):3576–3578PubMedCrossRefGoogle Scholar
  6. 6.
    Radtke A, Sotiropoulos GC, Nadalin S, Molmenti EP, Schroeder T et al (2007) Preoperative volume prediction in adult living donor liver transplantation: how much can we rely on it? Am J Transplant 7(3):672–679PubMedCrossRefGoogle Scholar
  7. 7.
    Nakayama Y, Li Q, Katsuragawa S, Ikeda R, Hiai Y et al (2006) Automated hepatic volumetry for living related liver transplantation at multisection CT. Radiology 240(3):743–748PubMedCrossRefGoogle Scholar
  8. 8.
    Bae KT, Giger ML, Chen CT, Kahn CE Jr (1993) Automatic segmentation of liver structure in CT images. Med Phys 20(1):71–78PubMedCrossRefGoogle Scholar
  9. 9.
    Gao L, Heath DG, Kuszyk BS, Fishman EK (1996) Automatic liver segmentation technique for three-dimensional visualization of CT data. Radiology 201(2):359–364PubMedGoogle Scholar
  10. 10.
    Selver MA, Kocaoglu A, Demir GK, Dogan H, Dicle O et al (2008) Patient oriented and robust automatic liver segmentation for pre-evaluation of liver transplantation. Comput Biol Med 38(7):765–784PubMedCrossRefGoogle Scholar
  11. 11.
    Okada T, Shimada R, Hori M, Nakamoto M, Chen YW et al (2008) Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model. Acad Radiol 15(11):1390–1403PubMedCrossRefGoogle Scholar
  12. 12.
    Chang HH, Valentino DJ (2008) An electrostatic deformable model for medical image segmentation. Comput Med Imaging Graph 32(1):22–35PubMedCrossRefGoogle Scholar
  13. 13.
    Boscolo R, Brown MS, McNitt-Gray MF (2002) Medical image segmentation with knowledge-guided robust active contours. Radiographics 22(2):437–448PubMedGoogle Scholar
  14. 14.
    Yuan Y, Giger ML, Li H, Suzuki K, Sennett C (2007) A dual-stage method for lesion segmentation on digital mammograms. Med Phys 34(11):4180–4193PubMedCrossRefGoogle Scholar
  15. 15.
    Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. Int J Comput Vis 22:61–79CrossRefGoogle Scholar
  16. 16.
    Sethian JA (1999) Level set methods and fast marching methods, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  17. 17.
    Perona P, Malik J (1990) Scale-Space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639CrossRefGoogle Scholar
  18. 18.
    Whitaker RT, Xue X (2001) Variable-conductance, level-set curvature for image denoising. In: Proceeding of the IEEE International Conference on Image Processing, Thessaloniki, Greece, pp 142–145Google Scholar
  19. 19.
    Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci U S A 93(4):1591–1595PubMedCrossRefGoogle Scholar
  20. 20.
    Suzuki K, Horiba I, Sugie N (2003) Linear-time connected-component labeling based on sequential local operations. Comput Vis Image Underst 89(1):1–23CrossRefGoogle Scholar
  21. 21.
    He L, Chao Y, Suzuki K, Wu K (2009) Fast connected-component labeling. Pattern Recognit 42:1977–1987CrossRefGoogle Scholar
  22. 22.
    He L, Chao Y, Suzuki K (2008) A run-based two-scan labeling algorithm. IEEE Trans Image Process 17(5):749–756PubMedCrossRefGoogle Scholar
  23. 23.
    Portney LG, Watkins MP (1993) Foundations of clinical research. Applications and practice. Appleton & Lange, Norwalk, CTGoogle Scholar
  24. 24.
    Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428PubMedCrossRefGoogle Scholar
  25. 25.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310PubMedCrossRefGoogle Scholar
  26. 26.
    Sandrasegaran K, Kwo PW, DiGirolamo D, Stockberger SM Jr, Cummings OW et al (1999) Measurement of liver volume using spiral CT and the curved line and cubic spline algorithms: reproducibility and interobserver variation. Abdom Imaging 24(1):61–65PubMedCrossRefGoogle Scholar
  27. 27.
    Doi K (2005) Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol 78(1):S3–S19PubMedCrossRefGoogle Scholar
  28. 28.
    Giger ML (2005) Update on the potential role of CAD in radiologic interpretations: are we making progress? Acad Radiol 12(6):669–670PubMedCrossRefGoogle Scholar
  29. 29.
    Giger ML, Suzuki K (2007) Computer-aided diagnosis (CAD). In: Feng DD (ed) Biomedical information technology. Academic, Cambridge, MA, pp 359–374Google Scholar
  30. 30.
    Oda S, Awai K, Suzuki K, Yanaga Y, Funama Y et al (2009) Performance of radiologists in detection of small pulmonary nodules on chest radiographs: effect of rib suppression with a massive-training artificial neural network. AJR Am J Roentgenol 193(5):W397–W402PubMedCrossRefGoogle Scholar
  31. 31.
    Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K (2006) Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med Phys 33(7):2642–2653PubMedCrossRefGoogle Scholar
  32. 32.
    Suzuki K, Abe H, MacMahon H, Doi K (2006) Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging 25(4):406–416PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K (2005) False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol 12(2):191–201PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki K (2009) A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol 54(18):S31–S45PubMedCrossRefGoogle Scholar
  35. 35.
    Li Q, Li F, Suzuki K, Shiraishi J, Abe H et al (2005) Computer-aided diagnosis in thoracic CT. Semin Ultrasound CT MR 26(5):357–363PubMedCrossRefGoogle Scholar
  36. 36.
    Li F, Arimura H, Suzuki K, Shiraishi J, Li Q et al (2005) Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology 237(2):684–690PubMedCrossRefGoogle Scholar
  37. 37.
    Suzuki K, Doi K (2005) How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Acad Radiol 12(10):1333–1341PubMedCrossRefGoogle Scholar
  38. 38.
    Suzuki K, Li F, Sone S, Doi K (2005) Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24(9):1138–1150PubMedCrossRefGoogle Scholar
  39. 39.
    Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J et al (2004) Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol 11(6):617–629PubMedCrossRefGoogle Scholar
  40. 40.
    Li F, Aoyama M, Shiraishi J, Abe H, Li Q et al (2004) Radiologists’ performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. AJR Am J Roentgenol 183(5):1209–1215PubMedGoogle Scholar
  41. 41.
    Suzuki K, Armato SG 3rd, Li F, Sone S, Doi K (2003) Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys 30(7):1602–1617PubMedCrossRefGoogle Scholar
  42. 42.
    Uchiyama Y, Katsuragawa S, Abe H, Shiraishi J, Li F et al (2003) Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med Phys 30(9):2440–2454PubMedCrossRefGoogle Scholar
  43. 43.
    King M, Giger ML, Suzuki K, Pan X (2007) Feature-based characterization of motion-contaminated calcified plaques in cardiac multidetector CT. Med Phys 34(12):4860–4875PubMedCrossRefGoogle Scholar
  44. 44.
    King M, Giger ML, Suzuki K, Bardo DM, Greenberg B et al (2007) Computerized assessment of motion-contaminated calcified plaques in cardiac multidetector CT. Med Phys 34(12):4876–4889PubMedCrossRefGoogle Scholar
  45. 45.
    Suzuki K, Horiba I, Sugie N, Nanki M (2004) Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans Med Imaging 23(3):330–339PubMedCrossRefGoogle Scholar
  46. 46.
    Suzuki K, Rockey DC, Dachman AH (2010) CT colonography: Computer-aided detection of false-negative polyps in a multicenter clinical trial. Med Phys 30:2–21Google Scholar
  47. 47.
    Lostumbo A, Suzuki K, Dachman AH (2010) Flat lesions in CT colonography. Abdom Imaging 35:578–583PubMedCrossRefGoogle Scholar
  48. 48.
    Suzuki K, Yoshida H, Nappi J, Armato SG 3rd, Dachman AH (2008) Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Med Phys 35(2):694–703PubMedCrossRefGoogle Scholar
  49. 49.
    Doshi T, Rusinak D, Halvorsen RA, Rockey DC, Suzuki K et al (2007) CT colonography: false-negative interpretations. Radiology 244(1):165–173PubMedCrossRefGoogle Scholar
  50. 50.
    Suzuki K, Yoshida H, Nappi J, Dachman AH (2006) Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes. Med Phys 33(10):3814–3824PubMedCrossRefGoogle Scholar
  51. 51.
    Okamoto E, Kyo A, Yamanaka N, Tanaka N, Kuwata K (1984) Prediction of the safe limits of hepatectomy by combined volumetric and functional measurements in patients with impaired hepatic function. Surgery 95(5):586–592PubMedGoogle Scholar
  52. 52.
    Yamanaka J, Saito S, Fujimoto J (2007) Impact of preoperative planning using virtual segmental volumetry on liver resection for hepatocellular carcinoma. World J Surg 31(6):1249–1255PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Radiology, Division of the Biological SciencesThe University of ChicagoChicagoUSA

Personalised recommendations