Digital Topology in Brain Image Segmentation and Registration

  • Pierre-Louis BazinEmail author
  • Navid Shiee
  • Lotta M. Ellingsen
  • Jerry L. Prince
  • Dzung L. Pham


Topological concepts are critically important in the computation of anatomical representations, establishing correspondences between structures, and quantifying shape differences in medical image analysis. Early work in the preservation of an object’s topology to brain imaging involved generating digital reconstructions of the cerebral cortex, which is known to have a fixed topology. Such reconstructions facilitate the analysis and visualization of functional activity and allow group comparisons of cortical geometry in a standardized space. These applications are possible because topology preservation guarantees a mapping equivalence between specific shapes, such as between two cortical surfaces or between the cortex and a sphere. More recent work has shown that enforcing topology-preserving segmentations can maintain relationships between multiple objects and are robust to noise without biasing shape. In this chapter, we present the core principles of digital topology and describe their use in several fundamental tools for topology-preserving image analysis. We further demonstrate how these principles and tools can be applied to derive brain segmentation and registration algorithms that explicitly maintain multi-object topology. The advantage of these algorithms is that structures are reconstructed in a manner consistent with the underlying anatomy, thereby improving accuracy and readily enabling diffeomorphic shape analyses.


Simple Point Speed Function Spherical Topology Brain Segmentation Topology Preservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andrade A, Kherif F, Mangin J, Worsley KJ, Paradis A, Simon O, Dehaene S, Le Bihan D, Poline J (2001) Detection of fMRI activation using cortical surface mapping. Hum Brain Mapp 12:79–93PubMedCrossRefGoogle Scholar
  2. 2.
    Bazin P-L, Ellingsen LM, Pham DL (2007) Digital homeomorphisms in deformable registration. In: Proceedings of the international conference on information processing in medical imagingGoogle Scholar
  3. 3.
    Bazin P-L, Pham DL (2007) Topology correction of segmented medical images using a fast marching algorithm. Comput Methods Programs Biomed 88(2):182–190PubMedCrossRefGoogle Scholar
  4. 4.
    Bazin P-L, Pham DL (2007) Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans Med Imaging 26(4):487–496, Special Issue on Computational NeuroanatomyPubMedCrossRefGoogle Scholar
  5. 5.
    Bazin P-L, Pham DL (2008) Homeomorphic brain image segmentation with topological and statistical atlases. Med Image Anal 12:616–625PubMedCrossRefGoogle Scholar
  6. 6.
    Bazin P-L, Pham DL (2005) Topology preserving tissue classification with fast marching and topology templates. In: Proceedings of the international conference on information processing in medical imaging (IPMI’05), Glenwood Springs, July 2005Google Scholar
  7. 7.
    Bertrand G (1994) Simple points, topological numbers and geodesic neighborhood in cubic grids. Pattern Recognit Lett 15(10):1003–1011CrossRefGoogle Scholar
  8. 8.
    Brox T, Weickert J (2006) Level set segmentation with multiple regions. IEEE Trans Image Process 15(10):3213–3218PubMedCrossRefGoogle Scholar
  9. 9.
    Christensen GE, Geng X, Kuhl JG, Bruss J, Grabowski TJ, Pirwani IA, Vannier MW, Allen JS, Damasio H (2006). Introduction to the non-rigid image registration evaluation project (NIREP). In: Third international workshop on biomedical image registration (WBIR 2006) (Lecture notes in computer science)Google Scholar
  10. 10.
    Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5(10):1435–1397PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen L (2006) Handbook of mathematical models in computer vision, chapter minimal paths and fast marching methods for image analysis. Springer, New York, pp 97–111Google Scholar
  12. 12.
    Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani N, Holmes C, Evans A (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17:463–468PubMedCrossRefGoogle Scholar
  13. 13.
    Crum WR, Rueckert D, Jenkinson M, Kennedy D, Smith SM (2004) A framework for detailed objective comparison of non-rigid registration algorithms in neuroimaging. In: The international conference on medical image computing and computer-assisted intervention (MICCAI), pp 679–686Google Scholar
  14. 14.
    Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I: segmentation and surface reconstruction. Neuroimage 9(2):179–194PubMedCrossRefGoogle Scholar
  15. 15.
    Drury HA, Essen DCV, Anderson CH, Lee WC, Coogan TA, Lewis JW (1996) Computerized mapping of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J Cogn Neurosci 8:1–28PubMedCrossRefGoogle Scholar
  16. 16.
    Ellingsen LM, Prince JL (2009) Mjolnir: extending hammer using a diffusion transformation model and histogram equalization for deformable image registration. Int J Biomed Imaging 2009:281615PubMedCrossRefGoogle Scholar
  17. 17.
    L Euler (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii acadeiae scientiarum Petropolitanae 8:128–140Google Scholar
  18. 18.
    Faisan S, Passat N, Noblet V, Chabrier R, Meyer C (2008) Topology preserving warping of binary images: application to atlas-based skull segmentation. Med Image Comput Comput Assist Interv 11(Pt 1):211–218PubMedGoogle Scholar
  19. 19.
    Fan X, Bazin P-L, Bogovic JA, Bai Y, Prince JL (2008) A multiple geometric deformable model framework for homeomorphic 3D medical image segmentation. In: Proceedings of MMBIAGoogle Scholar
  20. 20.
    Fan X, Bazin P-L, Prince JL (2008) A multicompartment segmentation framework with homeomorphic level sets. In: Proceedings of CVPRGoogle Scholar
  21. 21.
    Felten DL, Jozefowicz R (2003) Netter’s atlas of human neuroscience (Netter Basic Science). Saunders, Philadelphia, PAGoogle Scholar
  22. 22.
    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355PubMedCrossRefGoogle Scholar
  23. 23.
    Foley JD (1995) Computer graphics: principles and practice. Addison-Wesley Professional, Reading, MAGoogle Scholar
  24. 24.
    Grenander U, Miller M (2007) Pattern theory: from representation to inference. Oxford University Press, New YorkGoogle Scholar
  25. 25.
    Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math 56(4):617–694Google Scholar
  26. 26.
    Han X, Pham D, Tosun D, Rettmann ME, Xu C, Prince JL (2004) CRUISE: cortical reconstruction using implicit surface evolution. Neuroimage 23(3):997–1012PubMedCrossRefGoogle Scholar
  27. 27.
    Han X, Xu C, Braga-Neto U, Prince JL (2002) Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm. IEEE Trans Med Imaging 21(2):109–121PubMedCrossRefGoogle Scholar
  28. 28.
    Han X, Xu C, Prince JL (2003) A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25(6):755–768CrossRefGoogle Scholar
  29. 29.
    Hellier P, Barillot C, Corouge I, Gibaud B, Le Goualher G, Collins DL, Evans A, Malandain G, Ayache N, Christensen GE, Johnson HJ (2003) Retrospective evaluation of intersubject brain registration. IEEE Trans Med Imaging 22(9):1120–1130PubMedCrossRefGoogle Scholar
  30. 30.
    ICBM Single Subject MRI Anatomical Template. BrainTemplate.html
  31. 31.
    Jonasson L, Hagmann P, Thiran J (2007) A level set method for segmentation of the thalamus and its nuclei in DT MRI. Signal Process 87(2):309–321CrossRefGoogle Scholar
  32. 32.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1:312–333Google Scholar
  33. 33.
    Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a laplacian map and partial volume effect classification. Neuroimage 27:210–221PubMedCrossRefGoogle Scholar
  34. 34.
    Kong TY, Rosenfeld A (1989) Digital topology: introduction and survey. Comput Vis Graph Image Process 48(3):357–393CrossRefGoogle Scholar
  35. 35.
    Latecki LJ (1997) 3D well-composed pictures. Graph Model Image Process 59(3):164–172CrossRefGoogle Scholar
  36. 36.
    van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908PubMedCrossRefGoogle Scholar
  37. 37.
    Li H, Yezzi A, Cohen LD (2006) 3D brain segmentation using dual-front active contours with optional user interaction. Int J Biomed Imaging 2006:1–17CrossRefGoogle Scholar
  38. 38.
    Li SZ (2009) Markov random field modeling in image analysis. Springer, London, UKGoogle Scholar
  39. 39.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of SIGGRAPH’87, vol 21 pp 163–169Google Scholar
  40. 40.
    Lorenzen P, Davis B, Joshi S (2005) Unbiased atlas formation via large deformations metric mapping. In: Proceedings of the international conference on information processing in medical imaging 2005 (IPMI’05), Glenwood Springs, July 2005Google Scholar
  41. 41.
    Malandain G, Bertrand G, Ayache N (1993) Topological segmentation of discrete surfaces. Int J Comput Vis 10(2):183–197CrossRefGoogle Scholar
  42. 42.
    Mangin J-F, Frouin V, Bloch I, Regis J, Lopez Krahe J (1995) From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J Math Imaging Vis 5:297–318CrossRefGoogle Scholar
  43. 43.
    Narayanan R, Fessler JA, Park H, Meyer CR (2005). Diffeomorphic nonlinear transformations: a local parametric approach for image registration. In: Proceedings of the international conference on information processing in medical imaging 2005 (IPMI’05), Glenwood Springs, July 2005Google Scholar
  44. 44.
    Nolte J, Angevine JB (2000) The human brain: in photographs and diagrams. Mosby, St Louis, MO, p 2000Google Scholar
  45. 45.
    Osher SJ, Fedkiw RP (2002) Level set methods and dynamic implicit surfaces. Springer-Verlag, New YorkGoogle Scholar
  46. 46.
    Pham DL, Bazin P-L (2006) Simultaneous registration and tissue classification using clustering algorithms. In: Proceedings of the 3rd IEEE international symposium on biomedical imaging (ISBI 2006), pp 650–653Google Scholar
  47. 47.
    Pham DL (2001) Spatial models for fuzzy clustering. Comput Vis Image Underst 84:285–297CrossRefGoogle Scholar
  48. 48.
    Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge, UKGoogle Scholar
  49. 49.
    Shen D, Davatzikos C (2002) HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21(11):1421–1439PubMedCrossRefGoogle Scholar
  50. 50.
    Shiee N, Bazin P-L, Cuzzocreo JL, Reich DS, Calabresi PA, Pham DL (2008) Topologically constrained segmentation of brain images with multiple sclerosis lesions. In: Proceeding of the MICCAI workshop on medical image analysis on multiple sclerosis (MIAMS), pp 71–81Google Scholar
  51. 51.
    Shiee N, Bazin P-L, Ozturk A, Calabresi PA, Reich DS, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49(2):1524–1535PubMedCrossRefGoogle Scholar
  52. 52.
    Shiee N, Bazin P-L, Pham DL (2008) Multiple sclerosis lesion segmentation using statistical and topological atlases. IJ – 2008 MICCAI workshop – MS lesion segmentation grand challengeGoogle Scholar
  53. 53.
    Shiee N, Bazin P-L, Reich DS, Pham DL (2009) Automated cortical reconstruction of brains with multiple sclerosis. In: Proceedings of the international symposium on biomedical imagingGoogle Scholar
  54. 54.
    Talairach J, Tournoux P (1988) Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System – an Approach to Cerebral Imaging, Thieme Medical publishers, New YorkGoogle Scholar
  55. 55.
    Teo PC, Sapiro G, Wandell BA (1997) Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans Med Imaging 16(6):852–863PubMedCrossRefGoogle Scholar
  56. 56.
    Thompson PM, Toga AW (2002) A framework for computational anatomy. Comput Vis Sci 5:1–12CrossRefGoogle Scholar
  57. 57.
    Tosun D, Rettmann ME, Prince JL (2003) Mapping techniques for aligning sulci across multiple brains. In: Proceedings of the sixth annual international conference on medical image computing and computer-assisted interventions (MICCAI), Montreal, QC, Canada, November 2003Google Scholar
  58. 58.
    Tuch DS (2002) Diffusion MRI of complex tissue structure. Ph.D. thesis, Division of Health Science and Techonology, YaleGoogle Scholar
  59. 59.
    Tuch D, Ulas Z, Westin C (2006) Segmentation of thalamic nuclei from DTI using spectral clustering. In: MICCAI, pp 807–814Google Scholar
  60. 60.
    Ueno K, Shiga K, Sunada T, Tyler E, Morita S (2005) A mathematical gift: the interplay between topology, functions, geometry, and algebra. American Mathematical Society, Providence, RIGoogle Scholar
  61. 61.
    Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45(1 Suppl 1):S61–S72PubMedCrossRefGoogle Scholar
  62. 62.
    Vese LA, Chan TF (2002) A multi-phase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293CrossRefGoogle Scholar
  63. 63.
    A. Worth. Internet brain segmentation repository., 1996
  64. 64.
    Xu C, Pham DL, Rettmann ME, Yu DN, Prince JL (1999) Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18(6):467–480PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pierre-Louis Bazin
    • 1
    Email author
  • Navid Shiee
  • Lotta M. Ellingsen
  • Jerry L. Prince
  • Dzung L. Pham
  1. 1.Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany

Personalised recommendations