Skip to main content

Abstract

Topological concepts are critically important in the computation of anatomical representations, establishing correspondences between structures, and quantifying shape differences in medical image analysis. Early work in the preservation of an object’s topology to brain imaging involved generating digital reconstructions of the cerebral cortex, which is known to have a fixed topology. Such reconstructions facilitate the analysis and visualization of functional activity and allow group comparisons of cortical geometry in a standardized space. These applications are possible because topology preservation guarantees a mapping equivalence between specific shapes, such as between two cortical surfaces or between the cortex and a sphere. More recent work has shown that enforcing topology-preserving segmentations can maintain relationships between multiple objects and are robust to noise without biasing shape. In this chapter, we present the core principles of digital topology and describe their use in several fundamental tools for topology-preserving image analysis. We further demonstrate how these principles and tools can be applied to derive brain segmentation and registration algorithms that explicitly maintain multi-object topology. The advantage of these algorithms is that structures are reconstructed in a manner consistent with the underlying anatomy, thereby improving accuracy and readily enabling diffeomorphic shape analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrade A, Kherif F, Mangin J, Worsley KJ, Paradis A, Simon O, Dehaene S, Le Bihan D, Poline J (2001) Detection of fMRI activation using cortical surface mapping. Hum Brain Mapp 12:79–93

    Article  PubMed  CAS  Google Scholar 

  2. Bazin P-L, Ellingsen LM, Pham DL (2007) Digital homeomorphisms in deformable registration. In: Proceedings of the international conference on information processing in medical imaging

    Google Scholar 

  3. Bazin P-L, Pham DL (2007) Topology correction of segmented medical images using a fast marching algorithm. Comput Methods Programs Biomed 88(2):182–190

    Article  PubMed  Google Scholar 

  4. Bazin P-L, Pham DL (2007) Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans Med Imaging 26(4):487–496, Special Issue on Computational Neuroanatomy

    Article  PubMed  Google Scholar 

  5. Bazin P-L, Pham DL (2008) Homeomorphic brain image segmentation with topological and statistical atlases. Med Image Anal 12:616–625

    Article  PubMed  Google Scholar 

  6. Bazin P-L, Pham DL (2005) Topology preserving tissue classification with fast marching and topology templates. In: Proceedings of the international conference on information processing in medical imaging (IPMI’05), Glenwood Springs, July 2005

    Google Scholar 

  7. Bertrand G (1994) Simple points, topological numbers and geodesic neighborhood in cubic grids. Pattern Recognit Lett 15(10):1003–1011

    Article  Google Scholar 

  8. Brox T, Weickert J (2006) Level set segmentation with multiple regions. IEEE Trans Image Process 15(10):3213–3218

    Article  PubMed  Google Scholar 

  9. Christensen GE, Geng X, Kuhl JG, Bruss J, Grabowski TJ, Pirwani IA, Vannier MW, Allen JS, Damasio H (2006). Introduction to the non-rigid image registration evaluation project (NIREP). In: Third international workshop on biomedical image registration (WBIR 2006) (Lecture notes in computer science)

    Google Scholar 

  10. Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5(10):1435–1397

    Article  PubMed  CAS  Google Scholar 

  11. Cohen L (2006) Handbook of mathematical models in computer vision, chapter minimal paths and fast marching methods for image analysis. Springer, New York, pp 97–111

    Google Scholar 

  12. Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani N, Holmes C, Evans A (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17:463–468

    Article  PubMed  CAS  Google Scholar 

  13. Crum WR, Rueckert D, Jenkinson M, Kennedy D, Smith SM (2004) A framework for detailed objective comparison of non-rigid registration algorithms in neuroimaging. In: The international conference on medical image computing and computer-assisted intervention (MICCAI), pp 679–686

    Google Scholar 

  14. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I: segmentation and surface reconstruction. Neuroimage 9(2):179–194

    Article  PubMed  CAS  Google Scholar 

  15. Drury HA, Essen DCV, Anderson CH, Lee WC, Coogan TA, Lewis JW (1996) Computerized mapping of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J Cogn Neurosci 8:1–28

    Article  PubMed  CAS  Google Scholar 

  16. Ellingsen LM, Prince JL (2009) Mjolnir: extending hammer using a diffusion transformation model and histogram equalization for deformable image registration. Int J Biomed Imaging 2009:281615

    Article  PubMed  Google Scholar 

  17. L Euler (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii acadeiae scientiarum Petropolitanae 8:128–140

    Google Scholar 

  18. Faisan S, Passat N, Noblet V, Chabrier R, Meyer C (2008) Topology preserving warping of binary images: application to atlas-based skull segmentation. Med Image Comput Comput Assist Interv 11(Pt 1):211–218

    PubMed  Google Scholar 

  19. Fan X, Bazin P-L, Bogovic JA, Bai Y, Prince JL (2008) A multiple geometric deformable model framework for homeomorphic 3D medical image segmentation. In: Proceedings of MMBIA

    Google Scholar 

  20. Fan X, Bazin P-L, Prince JL (2008) A multicompartment segmentation framework with homeomorphic level sets. In: Proceedings of CVPR

    Google Scholar 

  21. Felten DL, Jozefowicz R (2003) Netter’s atlas of human neuroscience (Netter Basic Science). Saunders, Philadelphia, PA

    Google Scholar 

  22. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  PubMed  CAS  Google Scholar 

  23. Foley JD (1995) Computer graphics: principles and practice. Addison-Wesley Professional, Reading, MA

    Google Scholar 

  24. Grenander U, Miller M (2007) Pattern theory: from representation to inference. Oxford University Press, New York

    Google Scholar 

  25. Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math 56(4):617–694

    Google Scholar 

  26. Han X, Pham D, Tosun D, Rettmann ME, Xu C, Prince JL (2004) CRUISE: cortical reconstruction using implicit surface evolution. Neuroimage 23(3):997–1012

    Article  PubMed  Google Scholar 

  27. Han X, Xu C, Braga-Neto U, Prince JL (2002) Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm. IEEE Trans Med Imaging 21(2):109–121

    Article  PubMed  Google Scholar 

  28. Han X, Xu C, Prince JL (2003) A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25(6):755–768

    Article  Google Scholar 

  29. Hellier P, Barillot C, Corouge I, Gibaud B, Le Goualher G, Collins DL, Evans A, Malandain G, Ayache N, Christensen GE, Johnson HJ (2003) Retrospective evaluation of intersubject brain registration. IEEE Trans Med Imaging 22(9):1120–1130

    Article  PubMed  CAS  Google Scholar 

  30. ICBM Single Subject MRI Anatomical Template. http://www.loni.ucla.edu/ICBM/ICBM BrainTemplate.html

  31. Jonasson L, Hagmann P, Thiran J (2007) A level set method for segmentation of the thalamus and its nuclei in DT MRI. Signal Process 87(2):309–321

    Article  Google Scholar 

  32. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1:312–333

    Google Scholar 

  33. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a laplacian map and partial volume effect classification. Neuroimage 27:210–221

    Article  PubMed  Google Scholar 

  34. Kong TY, Rosenfeld A (1989) Digital topology: introduction and survey. Comput Vis Graph Image Process 48(3):357–393

    Article  Google Scholar 

  35. Latecki LJ (1997) 3D well-composed pictures. Graph Model Image Process 59(3):164–172

    Article  Google Scholar 

  36. van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908

    Article  PubMed  Google Scholar 

  37. Li H, Yezzi A, Cohen LD (2006) 3D brain segmentation using dual-front active contours with optional user interaction. Int J Biomed Imaging 2006:1–17

    Article  Google Scholar 

  38. Li SZ (2009) Markov random field modeling in image analysis. Springer, London, UK

    Google Scholar 

  39. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of SIGGRAPH’87, vol 21 pp 163–169

    Google Scholar 

  40. Lorenzen P, Davis B, Joshi S (2005) Unbiased atlas formation via large deformations metric mapping. In: Proceedings of the international conference on information processing in medical imaging 2005 (IPMI’05), Glenwood Springs, July 2005

    Google Scholar 

  41. Malandain G, Bertrand G, Ayache N (1993) Topological segmentation of discrete surfaces. Int J Comput Vis 10(2):183–197

    Article  Google Scholar 

  42. Mangin J-F, Frouin V, Bloch I, Regis J, Lopez Krahe J (1995) From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J Math Imaging Vis 5:297–318

    Article  Google Scholar 

  43. Narayanan R, Fessler JA, Park H, Meyer CR (2005). Diffeomorphic nonlinear transformations: a local parametric approach for image registration. In: Proceedings of the international conference on information processing in medical imaging 2005 (IPMI’05), Glenwood Springs, July 2005

    Google Scholar 

  44. Nolte J, Angevine JB (2000) The human brain: in photographs and diagrams. Mosby, St Louis, MO, p 2000

    Google Scholar 

  45. Osher SJ, Fedkiw RP (2002) Level set methods and dynamic implicit surfaces. Springer-Verlag, New York

    Google Scholar 

  46. Pham DL, Bazin P-L (2006) Simultaneous registration and tissue classification using clustering algorithms. In: Proceedings of the 3rd IEEE international symposium on biomedical imaging (ISBI 2006), pp 650–653

    Google Scholar 

  47. Pham DL (2001) Spatial models for fuzzy clustering. Comput Vis Image Underst 84:285–297

    Article  Google Scholar 

  48. Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge, UK

    Google Scholar 

  49. Shen D, Davatzikos C (2002) HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21(11):1421–1439

    Article  PubMed  Google Scholar 

  50. Shiee N, Bazin P-L, Cuzzocreo JL, Reich DS, Calabresi PA, Pham DL (2008) Topologically constrained segmentation of brain images with multiple sclerosis lesions. In: Proceeding of the MICCAI workshop on medical image analysis on multiple sclerosis (MIAMS), pp 71–81

    Google Scholar 

  51. Shiee N, Bazin P-L, Ozturk A, Calabresi PA, Reich DS, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49(2):1524–1535

    Article  PubMed  Google Scholar 

  52. Shiee N, Bazin P-L, Pham DL (2008) Multiple sclerosis lesion segmentation using statistical and topological atlases. IJ – 2008 MICCAI workshop – MS lesion segmentation grand challenge

    Google Scholar 

  53. Shiee N, Bazin P-L, Reich DS, Pham DL (2009) Automated cortical reconstruction of brains with multiple sclerosis. In: Proceedings of the international symposium on biomedical imaging

    Google Scholar 

  54. Talairach J, Tournoux P (1988) Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System – an Approach to Cerebral Imaging, Thieme Medical publishers, New York

    Google Scholar 

  55. Teo PC, Sapiro G, Wandell BA (1997) Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans Med Imaging 16(6):852–863

    Article  PubMed  CAS  Google Scholar 

  56. Thompson PM, Toga AW (2002) A framework for computational anatomy. Comput Vis Sci 5:1–12

    Article  Google Scholar 

  57. Tosun D, Rettmann ME, Prince JL (2003) Mapping techniques for aligning sulci across multiple brains. In: Proceedings of the sixth annual international conference on medical image computing and computer-assisted interventions (MICCAI), Montreal, QC, Canada, November 2003

    Google Scholar 

  58. Tuch DS (2002) Diffusion MRI of complex tissue structure. Ph.D. thesis, Division of Health Science and Techonology, Yale

    Google Scholar 

  59. Tuch D, Ulas Z, Westin C (2006) Segmentation of thalamic nuclei from DTI using spectral clustering. In: MICCAI, pp 807–814

    Google Scholar 

  60. Ueno K, Shiga K, Sunada T, Tyler E, Morita S (2005) A mathematical gift: the interplay between topology, functions, geometry, and algebra. American Mathematical Society, Providence, RI

    Google Scholar 

  61. Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45(1 Suppl 1):S61–S72

    Article  PubMed  Google Scholar 

  62. Vese LA, Chan TF (2002) A multi-phase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293

    Article  Google Scholar 

  63. A. Worth. Internet brain segmentation repository. http://www.cma.mgh.harvard.edu/ibsr/, 1996

  64. Xu C, Pham DL, Rettmann ME, Yu DN, Prince JL (1999) Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18(6):467–480

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Louis Bazin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bazin, PL., Shiee, N., Ellingsen, L.M., Prince, J.L., Pham, D.L. (2011). Digital Topology in Brain Image Segmentation and Registration. In: El-Baz, A., Acharya U, R., Mirmehdi, M., Suri, J. (eds) Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8195-0_12

Download citation

Publish with us

Policies and ethics