Skip to main content

Superelastic Collisions and Electron Energy Distribution Function

  • Chapter
Fundamental Aspects of Plasma Chemical Physics

Abstract

The Chapter focuses on the role of inelastic and second-kind (superelastic) collisions in shaping the electron energy distribution function (eedf). Particularly important are the second-kind collisions, which create structures on the eedf, such as peaks and plateaux, also experimentally observed. This non-equilibrium behavior is reflected on the rate coefficients of electron induced processes, in particular dissociation and ionization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This principle assure the existence of the equilibrium distribution.

  2. 2.

    We should note that \( S_{sup}^{2}(\varepsilon ) = -S_{sup}^{1}(\varepsilon -\varepsilon ^{\star }) \) and \( S_{in}^{2}(\varepsilon ) = -S_{in}^{1}(\varepsilon +\varepsilon ^{\star }) \).

References

  • Adamovich IV, Rich JW (1997) The effect of superelastic electron-molecule collisions on the vibrational energy distribution function. J Phys D: Appl Phys 30(12):1741

    Article  ADS  Google Scholar 

  • Adams SF, Bogdanov EA, Demidov VI, Koepke ME, Kudryavtsev AA, Williamson JM (2012) Metastable atom and electron density diagnostic in the initial stage of a pulsed discharge in Ar and other rare gases by emission spectroscopy. Phys Plasmas (1994-present) 19(2):023510

    Google Scholar 

  • Arslanbekov RR, Kudryavtsev AA (1998) Energy balance of the bulk, Maxwellian electrons in spatially inhomogeneous negative-glow plasmas. Phys Rev E 58:6539–6552

    Article  ADS  Google Scholar 

  • Arslanbekov RR, Kudryavtsev AA (1999) Modeling of nonlocal slow-electron kinetics in a low-pressure negative-glow plasma. Phys Plasmas 6(3):1003–1016

    Article  ADS  Google Scholar 

  • Blagoev A, Kovachev S, Petrov G, Popov T (1992) Superelastic collisions between slow electrons and excited Hg atoms. J Phys B 25(7):1599

    Article  ADS  Google Scholar 

  • Bretagne J, Capitelli M, Gorse C, Puech V (1987) Influence of excited states on the electron distribution function in an argon plasma for discharge and post-discharge conditions. EPL (Europhys Lett) 3(11):1179

    Article  ADS  Google Scholar 

  • Cacciatore M, Capitelli M, Gorse C (1982) Non-equilibrium dissociation and ionization of nitrogen in electrical discharges: the role of electronic collisions from vibrationally excited molecules. Chem Phys 66(1–2):141–151

    Article  ADS  Google Scholar 

  • Capitelli M, Dilonardo M, Gorse C (1981) Coupled solutions of the collisional Boltzmann equations for electrons and the heavy particle master equation in nitrogen. Chem Phys 56(1):29–42

    Article  ADS  Google Scholar 

  • Capitelli M, Gorse C, Wilhelm J, Winkler R (1983) Collision dominated relaxation of electrons in a weakly ionized nitrogen plasma after abrupt change of the electric field. Chem Phys 79(1):1–7

    Article  ADS  Google Scholar 

  • Capitelli M, Gorse C, Wilhelm J, Winkler R (1984) The electron relaxation to stationary states in collision dominated plasmas in molecular gases. Annalen der Physik 496(2):119–138

    Article  ADS  Google Scholar 

  • Capitelli M, Celiberto R, Gorse C, Winkler R, Wilhelm J (1988) Electron energy distribution functions in radio-frequency collision dominated nitrogen discharges. J Phys D: Appl Phys 21(5):691

    Article  ADS  Google Scholar 

  • Capitelli M, Colonna G, Gicquel A, Gorse C, Hassouni K, Longo S (1996) Maxwell and non-Maxwell behavior of electron energy distribution function under expanding plasma jet conditions: the role of electron-electron, electron-ion, and superelastic electronic collisions under stationary and time-dependent conditions. Phys Rev E 54(2):1843

    Article  ADS  Google Scholar 

  • Capitelli M, Colonna G, De Pascale O, Gorse C, Hassouni K, Longo S (2009) Electron energy distribution functions and second kind collisions. Plasma Sources Sci Technol 18(1):014014

    Article  ADS  Google Scholar 

  • Capriati G, Colonna G, Gorse C, Capitelli M (1992) A parametric study of electron energy distribution functions and rate and transport coefficients in nonequilibrium helium plasmas. Plasma Chem Plasma Process 12(3):237–260

    Article  Google Scholar 

  • Capriati G, Boeuf J, Capitelli M (1993) A self-consistent one-dimensional model for He nonequilibrium kinetics in RF discharges. Plasma Chem Plasma Process 13(3):499–519

    Article  Google Scholar 

  • Colonna G, Gorse C, Capitelli M, Winkler R, Wilhelm J (1993) The influence of electron—electron collisions on electron energy distribution functions in N2 post discharge. Chem Phys Lett 213(1):5–9

    Article  ADS  Google Scholar 

  • D’Ammando G, Colonna G, Capitelli M, Laricchiuta A (2015) Superelastic collisions under low temperature plasma and afterglow conditions: a golden rule to estimate their quantitative effects. Phys Plasmas 22:034501

    Article  ADS  Google Scholar 

  • Demidov V, DeJoseph C, Kudryavtsev A (2006) Nonlocal effects in a bounded afterglow plasma with fast electrons. IEEE Trans Plasma Sci 34(3):825–833

    Article  ADS  Google Scholar 

  • De Tomasi F, Milosevic S, Verkerk P, Fioretti A, Allegrini M, Jabbour ZJ, Huennekens J (1997) Experimental study of caesium energy pooling collisions and modelling of the excited atom density in the presence of optical pumping and radiation trapping. J Phys B: Atomic, Molecular and Optical Physics 30(21):4991

    Google Scholar 

  • Dilecce G, Capitelli M, De Benedictis S (1991) Electron-energy distribution function measurements in capacitively coupled RF discharges. J Appl Phys 69(1):121–128

    Article  ADS  Google Scholar 

  • Dyatko NA, Kochetov IV, Napartovich AP (1993) Electron energy distribution function in decaying nitrogen plasmas. J Phys D: Appl Phys 26(3):418

    Article  ADS  Google Scholar 

  • Eletskii AV, Zaitsev YN, Fomichev SV (1988) Formation kinetics and parameters of a photoresonant plasma. Zh Eksp Teor Fiz 94:98–106

    ADS  Google Scholar 

  • Engelhardt AG, Phelps AV, Risk CG (1964) Determination of momentum transfer and inelastic collision cross sections for electrons in nitrogen using transport coefficients. Phys Rev 135:A1566–A1574

    Article  ADS  Google Scholar 

  • Ferreira CM, Loureiro J, Ricard A (1985) Populations in the metastable and the resonance levels of argon and stepwise ionization effects in a low-pressure argon positive column. J Appl Phys 57(1):82–90

    Article  ADS  Google Scholar 

  • Frost LS, Phelps AV (1964) Momentum-transfer cross sections for slow electrons in He, Ar, Kr, and Xe from transport coefficients. Phys Rev 136:A1538–A1545

    Article  ADS  Google Scholar 

  • Godyak VA, Demidov VI (2011) Probe measurements of electron-energy distributions in plasmas: what can we measure and how can we achieve reliable results? J Phys D: Appl Phys 44(23):233001

    Article  ADS  Google Scholar 

  • Gorbunov N, Melnikov A, Movtchan I, Smurov I, Flamant G (1999) Conductivity of a photoplasma of sodium vapor-inert gas mixtures. IEEE Trans Plasma Sci 27(1):182–192

    Article  ADS  Google Scholar 

  • Gorbunov NA, Melnikov AS, Smurov I, Bray I (2001) Ionization kinetics of optically excited lithium vapour under conditions of negative electron mobility. J Phys D: Appl Phys 34(9):1379

    Article  ADS  Google Scholar 

  • Gorse C, Capitelli M (1984) Kinetic processes in non-equilibrium carbon monoxide discharges. II. Self-consistent electron energy distribution functions. Chem Phys 85(2):177–187

    Google Scholar 

  • Gorse C, Paniccia F, Bretagne J, Capitelli M (1986) Electron energy distribution functions in carbon monoxide discharge and post-discharge conditions: the role of superelastic electronic collisions from CO(A 3 Π) state. J Appl Phys 59(3):731–735

    Article  ADS  Google Scholar 

  • Gorse C, Bretagne J, Capitelli M (1988a) Electron energy distribution function in helium discharges: the role of superelastic collisions from He(3 S). Phys Lett A 126(4):277–279

    Article  ADS  Google Scholar 

  • Gorse C, Cacciatore M, Capitelli M, De Benedictis S, Dilecce G (1988b) Electron energy distribution functions under N2 discharge and post-discharge conditions: a self-consistent approach. Chem Phys 119(1):63–70

    Article  ADS  Google Scholar 

  • Gorse C, Paniccia F, Ricard A, Capitelli M (1989) Electron energy distribution functions in He-CO DC laser mixture: the role of superelastic electronic collisions. Contrib Plasma Phys 29(1):109–117

    Article  ADS  Google Scholar 

  • Gorse C, Capitelli M, Celiberto R, Winkler R, Wilhelm J (1990a) Electron kinetics in radio-frequency plasmas: excimer Ne-Xe-HCI mixture. J Phys D: Appl Phys 23(8):1041

    Article  ADS  Google Scholar 

  • Gorse C, Capitelli M, Dipace A (1990b) Time-dependent Boltzmann equation in a self-sustained discharge XeCl laser: influence of electron-electron and superelastic collisions. J Appl Phys 67(2):1118–1120

    Article  ADS  Google Scholar 

  • Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14(4):722

    Article  ADS  Google Scholar 

  • Hake RD, Phelps AV (1967) Momentum-transfer and inelastic-collision cross sections for electrons in O2, CO, and CO2. Phys Rev 158:70–84

    Article  ADS  Google Scholar 

  • Hopkins MB, Anderson CA, Graham WG (1989) Time-resolved electron energy distribution function measurements in a low-frequency R.F. glow discharge. EPL (Europhys Lett) 8(2):141

    Google Scholar 

  • Jelenak A, Jovanovic̀ J, Bzenic̀ S, Vrhovac S, Manola S, Tomčik B, Petrovic̀ ZLj (1995) The influence of excited states on the kinetics of excitation and dissociation in gas mixtures containing methane. Diam Relat Mater 4(9):1103–1112

    Google Scholar 

  • Jiang P, Economou DJ (1993) Temporal evolution of the electron energy distribution function in oxygen and chlorine gases under DC and AC fields. J Appl Phys 73(12):8151–8160

    Article  ADS  Google Scholar 

  • Lee HC, Lee JK, Chung CW (2010) Evolution of the electron energy distribution and E-H mode transition in inductively coupled nitrogen plasma. Phys Plasmas (1994-present) 17(3):033506

    Google Scholar 

  • Longo S, Capitelli M, Hassouni K (1998) Nonequilibrium vibrational distributions of N2 in radio-frequency parallel-plate reactors. J Thermophys Heat Transf 12(4):473–477

    Article  Google Scholar 

  • Loureiro J (1993) Time-dependent electron kinetics in N2 and H2 for a wide range of the field frequency including electron-vibration superelastic collisions. Phys Rev E 47:1262–1275

    Article  ADS  Google Scholar 

  • LXcat (2015) Plasma data exchange project database. http://fr.lxcat.net/home/

  • Mahmoud MA, Gamal YEE (2010) Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation. Optica Applicata 40(1):129–141

    Google Scholar 

  • Matveyev AA, Silakov VP (2001) Electron energy distribution function in a moderately ionized argon plasma. Plasma Sources Sci Technol 10(2):134

    Article  ADS  Google Scholar 

  • Measures RM, Cardinal PG (1981) Laser ionization based on resonance saturation – a simple model description. Phys Rev A 23:804–815

    Article  ADS  Google Scholar 

  • Mizeraczyk J, Urbanik W (1983) Electron energy distribution function (0–40 eV range) in helium in transverse hollow-cathode discharge used for lasers. J Phys D: Appl Phys 16(11):2119

    Article  ADS  Google Scholar 

  • Morgan WL (1983) Non-Maxwellian electrons in a laser produced sodium plasma. Appl Phys Lett 42(9):790–791

    Article  ADS  Google Scholar 

  • Morgan W, Penetrante B (1990) Elendif: a time-dependent Boltzmann solver for partially ionized plasmas. Comput Phys Commun 58(1–2):127–152

    Article  ADS  Google Scholar 

  • Morgan WL, Franklin RD, Haas RA (1981) Electron energy distribution in photolytically pumped lasers. Appl Phys Lett 38(1):1–3

    Article  ADS  Google Scholar 

  • Nighan WL (1970) Electron energy distributions and collision rates in electrically excited N2, CO, and CO2. Phys Rev A 2:1989–2000

    Article  ADS  Google Scholar 

  • Nighan WL (1972) Electron kinetic processes in CO lasers. Appl Phys Lett 20(2):96–99

    Article  ADS  Google Scholar 

  • Osiac M, Schwarz-Selinger T, O’Connell D, Heil B, Petrovic ZL, Turner MM, Gans T, Czarnetzki U (2007) Plasma boundary sheath in the afterglow of a pulsed inductively coupled RF plasma. Plasma Sources Sci Technol 16(2):355

    Article  ADS  Google Scholar 

  • Pappas D, Smith BW, Omenetto N, Winefordner JD (2000) Formation of a cesium plasma by continuous-wave resonance excitation. Appl Spectrosc 54(8):1245–1249

    Article  ADS  Google Scholar 

  • Phelps AV (2005) JILA database. http://jila.colorado.edu/~avp/collision_data

    Google Scholar 

  • Phelps AV, Pitchford LC (1985) Anisotropic scattering of electrons by N2 and its effect on electron transport. Phys Rev A 31:2932–2949

    Article  ADS  Google Scholar 

  • Plasil R, Korolov I, Kotrik T, Dohnal P, Bano G, Donko Z, Glosik J (2009) Non-Maxwellian electron energy distribution function in He, He/Ar, He/Xe/H2 and He/Xe/D2 low temperature afterglow plasma. Eur Phys J D 54(2):391–398

    Article  ADS  Google Scholar 

  • Rockwood SD (1973) Elastic and inelastic cross sections for electron-Hg scattering from Hg transport data. Phys Rev A 8:2348–2358

    Article  ADS  Google Scholar 

  • Rockwood SD, Brau J, Proctor W, Canavan G (1973) Time-dependent calculations of carbon monoxide laser kinetics. IEEE J Quantum Electron 9(1):120–129

    Article  ADS  Google Scholar 

  • Seo SH (2006) Experimental investigations of pulse-power-modulated inductive discharges. J Korean Phys Soc 48(3):414–421

    Google Scholar 

  • Song MA, Lee YW, Chung TH (2011) Characterization of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy. Phys Plasmas 18(2):023504

    Article  ADS  Google Scholar 

  • Treanor CE, Rich JW, Rehm RG (1968) Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions. J Chem Phys 48(4):1798–1807

    Article  ADS  Google Scholar 

  • Wilhelm J, Winkler R (1976) Die relaxation der geschwindigkeitsverteilungsfunktion der elektronen im homogenen feld mit elastischen und anregenden stössen i. theoretische grundlagen und erste ergebnisse für zeitunabhängiges elektrisches feld. Beiträge aus der Plasmaphysik 16(5):287–315

    Article  ADS  Google Scholar 

  • Wilhelm J, Winkler R (1979) Progress in the kinetic description of non-stationary behaviour of the electron ensemble in non-isothermal plasmas. J Phys Colloq 40(C7):251–267

    Article  ADS  Google Scholar 

  • Winkler R, Wilhelm J, Capitelli M, Gorse C (1992) Impact of electron-electron interaction on the electron energy distribution function in molecular plasmas under RF field action. Plasma Chem Plasma Process 12(1):71–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Capitelli, M. et al. (2016). Superelastic Collisions and Electron Energy Distribution Function. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8185-1_5

Download citation

Publish with us

Policies and ethics