Skip to main content

Reactivity and Relaxation of Vibrationally/Rotationally Excited Molecules with Open Shell Atoms

  • Chapter
Fundamental Aspects of Plasma Chemical Physics

Abstract

This Chapter deals with the application of quasiclassical trajectory (QCT) method in the description of the interaction of open shell atoms with ro-vibrational excited diatomic molecules. Particular emphasis is given to VT (vibration-translation) mono-quantum and multi-quantum cross sections involving all the vibrational ladder of the molecule. Results for N-N2, O-O2 and N2-O systems are discussed after an assessment of the QCT method in getting complete datasets of rate coefficients to be included in non-equilibrium vibrational kinetic codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akpinar S, Armenise I, Defazio P, Esposito F, Gamallo P, Petrongolo C, Sayós R (2012) Quantum mechanical and quasiclassical Born-Oppenheimer dynamics of the reaction N\( _{2}(X^{1}\varSigma _{g}^{+})+ \) O(3 P) → N(4 S)+NO(X 2 Π) on the N2O \( \tilde{a}^{3}A^{{\prime\prime}} \) and \( \tilde{b}^{3}A^{{\prime}} \) surfaces. Chem Phys 398:81–89

    Google Scholar 

  • Althorpe SC (2001) Quantum wavepacket method for state-to-state reactive cross sections. J Chem Phys 114:1601

    Article  ADS  Google Scholar 

  • Aoiz FJ, Bañares L, Herrero VJ, Sàez Ràbanos V, Tanarro I (1997) The H+D2 → HD+D reaction. Quasiclassical trajectory study of cross sections, rate constants, and kinetic isotope effect. J Phys Chem A 101(35):6165–6176

    Article  Google Scholar 

  • Aoiz FJ, Bañares L, Herrero VJ (2005) The H+H2 reactive system. progress in the study of the dynamics of the simplest reaction. Int Rev Phys Chem 24(1):119–190

    Article  Google Scholar 

  • Balakrishnan N, Kharchenko V, Dalgarno A (1998) Quantum mechanical and semiclassical studies of N+N2 collisions and their application to thermalization of fast N atoms. J Chem Phys 108(3):943–949

    Article  ADS  Google Scholar 

  • Balakrishnan N, Vieira M, Babb J, Dalgarno A, Forrey R, Lepp S (1999) Rate coefficients for ro-vibrational transitions in H2 due to collisions with He. Astrophys J 524:1122

    Article  ADS  Google Scholar 

  • Bethe HA, Teller E (1941) Deviations from thermal equilibrium in shock waves. Technical report X-117, Ballistic Research Labs

    Google Scholar 

  • Billing G (1984) The semiclassical treatment of molecular roto/vibrational energy transfer. Comput Phys Rep 1(5):239–296

    Article  ADS  Google Scholar 

  • Bonnet L (2008) The method of Gaussian weighted trajectories. III. An adiabaticity correction proposal. J Chem Phys 128(4):044109

    Google Scholar 

  • Bonnet L, Rayez J (2004) Gaussian weighting in the quasiclassical trajectory method. Chem Phys Lett 397(1–3):106–109

    Article  ADS  Google Scholar 

  • Boothroyd AI, Keogh WJ, Martin PG, Peterson MR (1996) A refined H3 potential energy surface. J Chem Phys 104(18):7139

    Article  ADS  Google Scholar 

  • Bruno D, Capitelli M, Esposito F, Longo S, Minelli P (2002) Direct simulation of non-equilibrium kinetics under shock conditions in nitrogen. Chem Phys Lett 360(1–2):31–37

    Article  ADS  Google Scholar 

  • Capitelli M (1986) Nonequilibrium vibrational kinetics. Topics in current physics, vol 39. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Capitelli M, Esposito F, Kustova E, Nagnibeda E (2000) Rate coefficients for the reaction N2(i)+N → 3N: a comparison of trajectory calculations and the Treanor-Marrone model. Chem Phys Lett 330(1–2):207–211

    Article  ADS  Google Scholar 

  • Capitelli M, Celiberto R, Esposito F, Laricchiuta A (2007) Cross section data for negative ion sources. AIP Conf Proc 925(1):3–10

    Article  ADS  Google Scholar 

  • Caridade PJSB, Galvão BRL, Varandas AJC (2010) Quasiclassical trajectory study of atom-exchange and vibrational relaxation processes in collisions of atomic and molecular nitrogen. J Phys Chem A 114:6063–6070

    Article  Google Scholar 

  • Dove JE, Teitelbaum H (1974) The vibrational relaxation of H2. I. Experimental measurements of the rate of relaxation by H2, He, Ne, Ar, and Kr. Chem Phys 6(3):431–444

    Article  ADS  Google Scholar 

  • Esposito F (2011) Atom-Diatom collision processes: rovibrationally detailed cross sections for models. In: Levin DA, Wysong IJ, Garcia AL (eds) AIP conference proceedings, AIP Publishing, vol 1333, pp 1357–1364

    Google Scholar 

  • Esposito F (2013) Non-adiabatic dynamics with quasiclassical trajectories: a trajectory surface sliding method. Quantum reactive scattering workshop, Bordeaux, 10–14 June 2013

    Google Scholar 

  • Esposito F, Capitelli M (1999) Quasiclassical molecular dynamic calculations of vibrationally and rotationally state selected dissociation cross-sections: N+ N2(v, j) → 3N. Chem Phys Lett 302(1–2):49–54

    Article  ADS  Google Scholar 

  • Esposito F, Capitelli M (2001) Dynamical calculations of state-to-state and dissociation cross sections for atom-molecule collision processes in hydrogen. At Plasma-Mater Interact Data Fusion 9:65–73

    Google Scholar 

  • Esposito F, Capitelli M (2002) Quasiclassical trajectory calculations of vibrationally specific dissociation cross-sections and rate constants for the reaction O+O2(v) → 3O. Chem Phys Lett 364:180–187

    Article  ADS  Google Scholar 

  • Esposito F, Capitelli M (2005) Detailed cross section calculations of atom-molecule energy transfer processes and dissociation for hydrogen, nitrogen and oxygen. AIP Conf Proc 771(1):246–254

    Article  ADS  Google Scholar 

  • Esposito F, Capitelli M (2006) QCT calculations for the process N2(v)+N → N2(\( v^{{\prime}} \))+N in the whole vibrational range. Chem Phys Lett 418:581–585

    Google Scholar 

  • Esposito F, Capitelli M (2007) The relaxation of vibrationally excited O2 molecules by atomic oxygen. Chem Phys Lett 443:222–226

    Article  ADS  Google Scholar 

  • Esposito F, Capitelli M (2009) Selective vibrational pumping of molecular hydrogen via gas phase atomic recombination. J Phys Chem A 113:15307–15314

    Article  Google Scholar 

  • Esposito F, Gorse C, Capitelli M (1999) Quasi-classical dynamics calculations and state-selected rate coefficients for H+ H2(v, j) → 3H processes: application to the global dissociation rate under thermal conditions. Chem Phys Lett 303(5–6):636–640

    Article  ADS  Google Scholar 

  • Esposito F, Armenise I, Capitelli M (2006) N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations. Chem Phys 331(1):1–8

    Article  ADS  Google Scholar 

  • Esposito F, Armenise I, Capitta G, Capitelli M (2008) O-O2 state-to-state vibrational relaxation and dissociation rates based on quasiclassical calculations. Chem Phys 351(1–3):91–98

    Article  ADS  Google Scholar 

  • Flower D, Roueff E (1998) Vibrational relaxation in H-H2 collisions. J Phys B At Mol Opt Phys 31:L955

    Article  ADS  Google Scholar 

  • Galvão BRL, Caridade PJSB, Varandas AJC (2012) N(4 S2 D)+N2: accurate ab initio-based DMBE potential energy surfaces and surface-hopping dynamics. J Chem Phys 137(22):22A515

    Google Scholar 

  • Gamallo P, González M, Sayós R (2003) Ab initio derived analytical fits of the two lowest triplet potential energy surfaces and theoretical rate constants for the N(4 S)+NO(X 2 Π) system. J Chem Phys 119(5):2545

    Article  ADS  Google Scholar 

  • Garcia E, Saracibar A, Gómez-Carrasco S, Laganà A (2008) Modeling the global potential energy surface of the N+N2 reaction from ab initio data. Phys Chem Chem Phys 10:2552

    Article  Google Scholar 

  • Giese CF, Gentry WR (1974) Classical trajectory treatment of inelastic scattering in collisions of H+ with H2, HD, and D2. Phys Rev A 10(6):2156

    Article  ADS  Google Scholar 

  • Götting R, Herrero V, Toennies J, Vodegel M (1987) Determination of the absolute scattering cross section for the reaction D+H2(v = 1) → HD+H at 0.33 eV. Chem Phys Lett 137(6):524–532

    Article  ADS  Google Scholar 

  • Gray SK, Balint-Kurti GG (1998) Quantum dynamics with real wave packets, including application to three-dimensional (J = 0)D+H2 → HD+H reactive scattering. J Chem Phys 108(3):950

    Article  ADS  Google Scholar 

  • Hankel M, Smith SC, Allan RJ, Gray SK, Balint-Kurti GG (2006) State-to-state reactive differential cross sections for the H+H2 → H2+H reaction on five different potential energy surfaces employing a new quantum wavepacket computer code: DIFFREALWAVE. J Chem Phys 125:164303

    Article  ADS  Google Scholar 

  • Husimi K (1953) Miscellanea in elementary quantum mechanics, II. Prog Theor Phys 9(4):381–402

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jasper AW, Zhu C, Nangia S, Truhlar DG (2004) Introductory lecture: nonadiabatic effects in chemical dynamics. Faraday Discuss 127:1–22

    Article  ADS  Google Scholar 

  • Karplus M, Porter R, Sharma R (1965) Exchange reactions with activation energy. I. Simple barrier potential for (H, H2). J Chem Phys 43:3259

    Google Scholar 

  • Kerner EH (1958) Note on the forced and damped oscillator in quantum mechanics. Can J Phys 36(3):371–377

    Article  ADS  MATH  Google Scholar 

  • Kim JG, Kwon OJ, Park C (2009) Master equation study and nonequilibrium chemical reactions for H+H2 and He+H2. J Thermophys Heat Transf 23(3):443–453

    Article  MathSciNet  Google Scholar 

  • Krstić P, Schultz D (1999a) Elastic and vibrationally inelastic slow collisions: H+H2, H++H2. J Phys B At Mol Opt Phys 32:2415

    Article  ADS  Google Scholar 

  • Krstić PS, Schultz DR (1999b) Consistent definitions for, and relationships among, cross sections for elastic scattering of hydrogen ions, atoms, and molecules. Phys Rev A 60(3):2118

    Article  ADS  Google Scholar 

  • Laganà A, Garcia E (1994) Temperature dependence of nitrogen atom-molecule rate coefficients. J Phys Chem 98(2):502–507

    Article  Google Scholar 

  • Laganà A, Crocchianti S, Aspuru G, Riganelli A, García E (1997) Accurate calculations of cross sections and rate coefficients of some atom-diatom reactions relevant to plasma chemistry. Plasma Sources Sci Technol 6:270

    Article  ADS  Google Scholar 

  • Laganà A, Lombardi A, Pirani F, Gamallo P, Sayós R, Armenise I, Cacciatore M, Esposito F, Rutigliano M (2014) Molecular physics of elementary processes relevant to hypersonics: atom-molecule, molecule-molecule and atoms-surface processes. Open Plasma Phys J 7(Suppl 1: M1):48–59

    Google Scholar 

  • Langer RE (1937) On the connection formulas and the solutions of the wave equation. Phys Rev 51(8):669–676

    Article  ADS  MATH  Google Scholar 

  • Launay JM (1991) Computation of cross sections for the F+H\( _{2}(v = 0,j = 0) \rightarrow \) FH\( (v^{{\prime}},j)+ \) H reaction by the hyperspherical method. Theoretica chimica acta 79(3–4):183–190

    Google Scholar 

  • Mandy M, Martin P (1993) Collisional excitation of H2 molecules by H atoms. Astrophys J Suppl Ser 86:199–210

    Article  ADS  Google Scholar 

  • Massey HSW (1949) Collisions between atoms and molecules at ordinary temperatures. Rep Prog Phys 12:248

    Article  ADS  Google Scholar 

  • Mayne HR, Toennies JP (1981) Quasiclassical trajectory studies of the H+H2 reaction on an accurate potential-energy surface. III. Comparison of rate constants and cross sections with experiment. J Chem Phys 75(4):1794

    Google Scholar 

  • Mielke SL, Garrett BC, Peterson KA (2002) A hierarchical family of global analytic Born-Oppenheimer potential energy surfaces for the H+H2 reaction ranging in quality from double-zeta to the complete basis set limit. J Chem Phys 116(10):4142

    Article  ADS  Google Scholar 

  • Miller WH (1970) Semiclassical theory of atom-diatom collisions: path integrals and the classical S matrix. J Chem Phys 53(5):1949

    Article  ADS  MathSciNet  Google Scholar 

  • Miller WH (1971) Classical S matrix for rotational excitation; quenching of quantum effects in molecular collisions. J Chem Phys 54(12):5386

    Article  ADS  Google Scholar 

  • Miller WH (2001) The semiclassical initial value representation: a potentially practical way for adding quantum effects to classical molecular dynamics simulations. J Phys Chem A 105(13):2942–2955

    Article  Google Scholar 

  • Pattengill M (1979) Rotational excitation III: classical trajectory methods. In: Atom-molecule collision theory. Springer US, pp 359–375

    Google Scholar 

  • Polanyi JC, Sathyamurthy N, Schreiber JL (1977) Rotational energy transfer (theory). I. Comparison of quasiclassical and quantum mechanical results for elastic and rotationally inelastic HCl-Ar collisions. Chem Phys 24(1):105–110

    Google Scholar 

  • Porter RN, Raff LM (1976) Classical trajectory methods in molecular collisions. In: Dynamics of molecular collisions. Springer Series Modern Theoretical Chemistry, vol. 2. Springer US

    Google Scholar 

  • Schatz GC, Kuppermann A (1976a) Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory. J Chem Phys 65(11):4642

    Google Scholar 

  • Schatz GC, Kuppermann A (1976b) Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H+H2. J Chem Phys 65(11):4668

    Google Scholar 

  • Schwartz RN, Slawsky ZI, Herzfeld KF (1952) Calculation of vibrational relaxation times in gases. J Chem Phys 20(10):1591

    Article  ADS  Google Scholar 

  • Shuler KE, Zwanzig R (1960) Quantum-mechanical calculation of harmonic oscillator transition probabilities in a one-dimensional impulsive collision. J Chem Phys 33(6):1778

    Article  ADS  MathSciNet  Google Scholar 

  • Skouteris D, Castillo JF, Manolopoulos DE (2000) ABC: a quantum reactive scattering program. Comput Phys Commun 133(1):128–135

    Article  ADS  MATH  Google Scholar 

  • Treanor CE (1965) Vibrational energy transfer in high-energy collisions. J Chem Phys 43(2):532

    Article  ADS  Google Scholar 

  • Truhlar DG, Horowitz CJ (1978) Functional representation of Liu and Siegbahn’s accurate ab initio potential energy calculations for H+H2. J Chem Phys 68(5):2466

    Article  ADS  Google Scholar 

  • Tully JC, Preston RK (1971) Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2. J Chem Phys 55(2):562–572

    Article  ADS  Google Scholar 

  • Varandas A, Pais A (1988) A realistic double many-body expansion (DMBE) potential energy surface for ground-state O3 from a multiproperty fit to ab initio calculations, and to experimental spectroscopic, inelastic scattering, and kinetic isotope thermal rate data. Mol Phys 65(4):843–860

    Article  ADS  Google Scholar 

  • Wang D, Stallcop JR, Huo WM, Dateo CE, Schwenke DW, Partridge H (2003) Quantal study of the exchange reaction for N+N2 using an ab initio potential energy surface. J Chem Phys 118:2186

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Capitelli, M. et al. (2016). Reactivity and Relaxation of Vibrationally/Rotationally Excited Molecules with Open Shell Atoms. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8185-1_2

Download citation

Publish with us

Policies and ethics