Skip to main content

Toward the Activation of Polyatomic Molecules by eV Processes: The CO2 Case Study

  • Chapter
Fundamental Aspects of Plasma Chemical Physics

Abstract

In this Chapter upper limits to the dissociation mechanisms induced by vibrational excitation are compared with the corresponding rates from direct electron impact. Plasma-processing of CO2 under non-equilibrium conditions is considered due to the large interest nowadays existing for this molecule in energy and aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R, Snoeckx R, Bogaerts A (2014) In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma. Plasma Process Polym 11(10):985–992

    Article  Google Scholar 

  • Armenise I, Kustova E (2013) State-to-state models for CO2 molecules: from the theory to an application to hypersonic boundary layers. Chem Phys 415:269–281

    Article  ADS  Google Scholar 

  • Bultel A, Annaloro J (2013) Elaboration of collisional-radiative models for flows related to planetary entries into the Earth and Mars atmospheres. Plasma Sources Sci Technol 22(2):025008

    Article  ADS  Google Scholar 

  • Capezzuto P, Cramarossa F, D’Agostino R, Molinari E (1976) Contribution of vibrational excitation to the rate of carbon dioxide dissociation in electrical discharges. J Phys Chem 80(8):882–888

    Article  Google Scholar 

  • Capitelli M, Molinari E (1980) Kinetics of dissociation processes in plasmas in the low and intermediate pressure range. in Plasma Chemistry II, Springer Series Topics in Current Chemistry, vol. 90, pp. 59–109. Springer, Berlin Heidelberg

    Google Scholar 

  • Capitelli M, Gorse C, Berardini M, Braglia G (1981) Influence of second-kind collisions on electron energy distributions, transport coefficients and the rate coefficients in the laser mixture CO2-N2-He-CO. Lettere Al Nuovo Cimento Series 2 31(6):231–237

    Article  Google Scholar 

  • Capitelli M, Colonna G, D’Ammando G, Laporta V, Laricchiuta A (2013) The role of electron scattering with vibrationally excited nitrogen molecules on non-equilibrium plasma kinetics. Phys Plasmas 20(10):101609

    Article  ADS  Google Scholar 

  • Capitelli M, Colonna G, D’Ammando G, Laporta V, Laricchiuta A (2014) Nonequilibrium dissociation mechanisms in low temperature nitrogen and carbon monoxide plasmas. Chem Phys 438:31–36

    Article  ADS  Google Scholar 

  • Colonna G, Capitelli M, De Benedictis S, Gorse C, Paniccia F (1991) Electron energy distribution functions in CO2 laser mixture: the effects of second kind collisions from metastable electronic states. Contrib Plasma Phys 31(6):575–579

    Article  ADS  Google Scholar 

  • Fridman A (2012) Plasma chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Goede A, Bongers WA, Graswinckel MF, van de Sanden MCM, Leins M, Kopecki J, Schulz A, Walker M (2014) Chemical energy storage by CO2 plasmolysis. XARMAE Workshop, Barcelona, Jan 2014

    Google Scholar 

  • Kozàk T, Bogaerts A (2014) Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model. Plasma Sources Sci Technol 23(4):045004

    Article  ADS  Google Scholar 

  • Kumar M, Biswas A, Bhargav P, Reghu T, Sahu S, Pakhare J, Bhagat M, Kukreja L (2013) Theoretical estimation and experimental studies on gas dissociation in TEA CO2 laser for long term arc free operation. Opt Laser Technol 52:57–64

    Article  ADS  Google Scholar 

  • Legasov VA, Givotov VK, Krashennikov EG, Rusanov VD, Fridman A (1977) Sov Phys Doklady 238:66

    Google Scholar 

  • Lowke JJ, Phelps AV, Irwin BW (1973) Predicted electron transport coefficients and operating characteristics of CO2-N2-He laser mixtures. J Appl Phys 44(10):4664–4671

    Article  ADS  Google Scholar 

  • Park C (2008) Rate parameters for electronic excitation of diatomic molecules 1. Electron-impact processes. AIAA paper 2008–1206

    Google Scholar 

  • Sergeev P, Slovetsky D (1983) Vibrationally excited molecules and mechanisms of chemical and physical processes in non-equilibrium plasmas. Chem Phys 75(2):231–241

    Article  ADS  Google Scholar 

  • Silva T, Britun N, Godfroid T, Snyders R (2014) Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Sci Technol 23(2):025009

    Article  ADS  Google Scholar 

  • Taylan O, Berberoglu H (2015) Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration. Plasma Sources Sci Technol 24(1):015006

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Capitelli, M. et al. (2016). Toward the Activation of Polyatomic Molecules by eV Processes: The CO2 Case Study. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8185-1_12

Download citation

Publish with us

Policies and ethics